MTHSC 102 Section 1.3 – Limits and Continuity

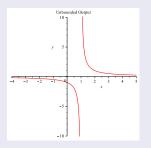
Kevin James

Kevin James MTHSC 102 Section 1.3 – Limits and Continuity

▲ 문 ▶ | ▲ 문 ▶

EXAMPLE

Consider the function whose graph is given below.



- Discuss the end behavior of the function. Are there horizontal asymptotes?
- **2** Discuss the behavior of the function near x = 1.

LEFT-HAND AND RIGHT-HAND LIMITS

DEFINITION

Suppose that f is a function defined on some interval containing c (except f may not be defined at c itself).

1 If f(x) becomes very near a number L_{ℓ} as x becomes very near and to the left of c then we write

$$\lim_{x\to c^-}f(x)=L_\ell.$$

LEFT-HAND AND RIGHT-HAND LIMITS

DEFINITION

Suppose that f is a function defined on some interval containing c (except f may not be defined at c itself).

1 If f(x) becomes very near a number L_{ℓ} as x becomes very near and to the left of c then we write

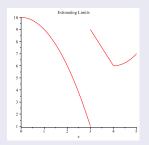
$$\lim_{x\to c^-}f(x)=L_\ell.$$

If f(x) becomes very near a number L_r as x becomes very near and to the right of c then we write

$$\lim_{x\to c^+} f(x) = L_{\ell}.$$

EXAMPLE

Consider the function f whose graph is the following.



- 1 Estimate $\lim_{x\to 3^-} f(x)$.
- **2** Estimate $\lim_{x\to 3^+} f(x)$.
- **3** Estimate $\lim_{x\to 4^-} f(x)$.
- 4 Estimate $\lim_{x\to 4^+} f(x)$.

▲圖▶ ▲ 国▶ ▲ 国▶

Suppose that f is a function defined on some interval containing c (except f may not be defined at c itself). If it is true that

$$\lim_{x\to c^-} f(x) = L \quad \text{and} \quad \lim_{x\to c^+} f(x) = L,$$

then we say that the limit of f as x approaches c is L and write

$$\lim_{x\to c} f(x) = L$$

伺 ト イヨ ト イヨト

Definition

Suppose that f is a function defined on some interval containing c (except f may not be defined at c itself). If it is true that

$$\lim_{x\to c^-} f(x) = L \quad \text{and} \quad \lim_{x\to c^+} f(x) = L,$$

then we say that the limit of f as x approaches c is L and write

$$\lim_{x\to c} f(x) = L$$

EXAMPLE

What can you say about the limits near 3 and 4 in the previous example?

(4回) (4回) (4回)

If $\lim_{x\to c^-} = \pm \infty$ and $\lim_{x\to c^+} = \pm \infty$ then we say that the line x = c is a vertical asymptote for the function f(x).

<ロ> (四) (四) (三) (三) (三)

If $\lim_{x\to c^-} = \pm \infty$ and $\lim_{x\to c^+} = \pm \infty$ then we say that the line x = c is a vertical asymptote for the function f(x).

EXAMPLE The function Unbounded Output 10 has a vertical asymptote at x = 1.

<日本

CONTINUOUS FUNCTIONS

EXAMPLE

Consider the function $f(x) = \frac{x^2 - 9}{x - 3}$.

- **1** Compute $\lim_{x\to 3^-} f(x)$ numerically.
- **2** Compute $\lim_{x\to 3^+} f(x)$ numerically.
- **3** Does the $\lim_{x\to 3} f(x)$ exist?
- 4 Does f(3) exist?

個 と く ヨ と く ヨ と

CONTINUOUS FUNCTIONS

EXAMPLE

Consider the function $f(x) = \frac{x^2 - 9}{x - 3}$.

- 1 Compute $\lim_{x\to 3^-} f(x)$ numerically.
- **2** Compute $\lim_{x\to 3^+} f(x)$ numerically.
- **3** Does the $\lim_{x\to 3} f(x)$ exist?
- 4 Does f(3) exist?

DEFINITION

A function f is <u>continuous at c</u> if

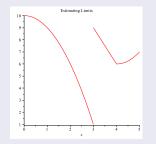
- 1 f(c) exists.
- 2 $\lim_{x\to c} f(x)$ exists
- $\lim_{x\to c} f(x) = f(c)$

イロト イポト イヨト イヨト

э

EXAMPLE

The function f(x) from before whose graph is below



is continuous at 4 but not at 3. It is also continuous at 2.

• • = • • = •

A function f is continuous on an open interval if it is continuous at every point in the interval.

個 と く き と く き と

A function f is continuous on an open interval if it is continuous at every point in the interval.

A function f is <u>continuous</u> everywhere if it is continuous at all points.

伺下 イヨト イヨト

Definition

A function f is continuous on an open interval if it is continuous at every point in the interval.

A function f is <u>continuous</u> everywhere if it is continuous at all points.

We call functions which are continuous everywhere

continuous functions.

伺 ト イヨト イヨト

A function f is continuous on an open interval if it is continuous at every point in the interval.

A function f is <u>continuous</u> everywhere if it is continuous at all points.

We call functions which are continuous everywhere

continuous functions.

EXAMPLE

The function from the previous example is continuous on the intervals (0,3) and (3,5).

向下 イヨト イヨト