MTHSC 102 SECTION 1.9 – QUADRATIC FUNCTIONS AND MODELS

Kevin James

QUADRATIC MODELS

ALGEBRAICALLY A quadratic model has an equation of the form $f(x) = ax^2 + bx + c$,

where $a \neq 0$ is a constant which determines the concavity of the model, and b and c are constants.

QUADRATIC MODELS

ALGEBRAICALLY A quadratic model has an equation of the form

$$f(x) = ax^2 + bx + c,$$

where $a \neq 0$ is a constant which determines the concavity of the model, and b and c are constants.

GRAPHICALLY A quadratic function has one of the following forms.

Suppose that $f(x) = ax^2 + bx + c$. Then there are two cases.

- f decreases to a minimum and then increases.
 - The graph is concave up.
 - $\lim_{x\to+\infty} (ax^2 + bx + c) = \infty$.
- a < 0 f increases to a maximum and then decreases.
 - The graph is concave down.
 - $\lim_{x\to+\infty} (ax^2 + bx + c) = -\infty$.

Suppose that $f(x) = ax^2 + bx + c$. Then there are two cases.

- a > 0
- f decreases to a minimum and then increases.
 - The graph is concave up.
 - $\lim_{x\to+\infty} (ax^2 + bx + c) = \infty$.
- a < 0 f increases to a maximum and then decreases.
 - The graph is concave down.
 - $\lim_{x\to+\infty} (ax^2 + bx + c) = -\infty$.

Quadratic functions have constant 2nd differences.

A roofing company records the number of jobs completed each month. The data is recorded below.

Month	Jan	Feb	Mar	Apr	May	Jun
Jobs	90	91	101	120	148	185

A roofing company records the number of jobs completed each month. The data is recorded below.

Month	Jan	Feb	Mar	Apr	May	Jun
Jobs	90	91	101	120	148	185

We compute the first and second differences.

Jobs	90	91	102	123	154	195
1st		1	11	21	31	41
2nd			10	10	10	10

Since the 2nd differences are constant, a quadratic function will best fit the data.

A roofing company records the number of jobs completed each month. The data is recorded below.

Month	Jan	Feb	Mar	Apr	May	Jun
Jobs	90	91	101	120	148	185

We compute the first and second differences.

Jobs	90	91	102	123	154	195
1st		1	11	21	31	41
2nd			10	10	10	10

Since the 2nd differences are constant, a quadratic function will best fit the data.

- 1 Use your calculator to find a quadratic model.
- 2 Use the graph to compute the minimum.

Г

The following table shows the population of the contiguous United States for selected years between 1790 and 1930.

Year	1790	1810	1830	1850	1870	1890	1910	1930
Pop. (millions)	3.929	7.240	12.866	23.192	39.818	62.948	91.972	122.775

The following table shows the population of the contiguous United States for selected years between 1790 and 1930.

Year	1790	1810	1830	1850	1870	1890	1910	1930
Pop. (millions)	3.929	7.240	12.866	23.192	39.818	62.948	91.972	122.775

The following is a scatter plot of the data.

Since the data records population and the scatter plot does not seem to have a local min, we might try an exponential model, such as

$$P(t) = 4.558(1.285)^t$$
 million people,

where t is the number of **decades** since 1790.

Since the data records population and the scatter plot does not seem to have a local min, we might try an exponential model, such as

$$P(t) = 4.558(1.285)^t$$
 million people,

where t is the number of **decades** since 1790. Graphing this model against our data, we have

Since the data records population and the scatter plot does not seem to have a local min, we might try an exponential model, such as

$$P(t) = 4.558(1.285)^t$$
 million people,

where t is the number of **decades** since 1790. Graphing this model against our data, we have

Not such a good fit.

We could next try a quadratic model such as

$$P(t) = 0.66t^2 - 0.77t + 4.31$$
 million people,

where t is the number of decades since 1790.

We could next try a quadratic model such as

$$P(t) = 0.66t^2 - 0.77t + 4.31$$
 million people,

where t is the number of decades since 1790. Graphing this model against the data, we have

We could next try a quadratic model such as

$$P(t) = 0.66t^2 - 0.77t + 4.31$$
 million people,

where t is the number of decades since 1790. Graphing this model against the data, we have

This is a much better fit in our data range.

1 If the plot appears to be near a straight line, then try a linear model.

- Examine a scatter plot of your data.
 - 1 If the plot appears to be near a straight line, then try a linear model.
 - ② If the data appears to lie on a curve and there is no inflection point try an exponential, log or quadratic model. It may be helpful to consider 2nd differences and first percentage changes and end behavior.
- 2 Look at the fit of the (at most 2) possible models from the first step.

- 1 Examine a scatter plot of your data.
 - 1 If the plot appears to be near a straight line, then try a linear model.
 - 2 If the data appears to lie on a curve and there is no inflection point try an exponential, log or quadratic model. It may be helpful to consider 2nd differences and first percentage changes and end behavior.
- 2 Look at the fit of the (at most 2) possible models from the first step.
- 3 Look at the end behavior. Perhaps you can discern between models not separated above by end behavior.

- Examine a scatter plot of your data.
 - 1 If the plot appears to be near a straight line, then try a linear model.
 - 2 If the data appears to lie on a curve and there is no inflection point try an exponential, log or quadratic model. It may be helpful to consider 2nd differences and first percentage changes and end behavior.
- 2 Look at the fit of the (at most 2) possible models from the first step.
- 3 Look at the end behavior. Perhaps you can discern between models not separated above by end behavior.
- Onsider that thee may be two equally good choices of model.