Average vs. Instantaneous Rates of Change

<table>
<thead>
<tr>
<th>Average Rates of Change</th>
<th>Instantaneous Rates of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measures the rate of change of a quantity over an interval</td>
<td>Measures the rate of change of a quantity at a point</td>
</tr>
</tbody>
</table>

All of the following phrases mean the same.

- Instantaneous rate of change
- Rate of change
- Slope of the curve
- Slope of the tangent line
- Derivative
Average vs. Instantaneous Rates of Change

<table>
<thead>
<tr>
<th>Average Rates of Change</th>
<th>Instantaneous Rates of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measures the rate of change of a quantity over an interval</td>
<td>Measures the rate of change of a quantity at a point</td>
</tr>
<tr>
<td>Slope of a secant line</td>
<td>Slope of the tangent line</td>
</tr>
</tbody>
</table>

Equivalent Terminology

- Instantaneous rate of change
- Rate of change
- Slope of the curve
- Slope of the tangent line
- Derivative
<table>
<thead>
<tr>
<th>Average Rates of Change</th>
<th>Instantaneous Rates of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measures the rate of change of a quantity over</td>
<td>Measures the rate of change of a quantity at a point</td>
</tr>
<tr>
<td>an interval</td>
<td></td>
</tr>
<tr>
<td>Slope of a secant line</td>
<td>Slope of the tangent line</td>
</tr>
<tr>
<td>Requires data points or a continuous curve to</td>
<td>Requires a continuous smooth curve to calculate</td>
</tr>
<tr>
<td>calculate</td>
<td></td>
</tr>
</tbody>
</table>

Equivalent Terminology

• Instantaneous rate of change
• rate of change
• slope of the curve
• slope of the tangent line
• derivative
Average vs. Instantaneous Rates of Change

<table>
<thead>
<tr>
<th>Average Rates of Change</th>
<th>Instantaneous Rates of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measures the rate of change of a quantity over an interval</td>
<td>Measures the rate of change of a quantity at a point</td>
</tr>
<tr>
<td>Slope of a secant line</td>
<td>Slope of the tangent line</td>
</tr>
<tr>
<td>Requires data points or a continuous curve to calculate</td>
<td>Requires a continuous smooth curve to calculate</td>
</tr>
</tbody>
</table>

Equivalent Terminology

All of the following phrases mean the same.

- Instantaneous rate of change
Average vs. Instantaneous Rates of Change

<table>
<thead>
<tr>
<th>Average Rates of Change</th>
<th>Instantaneous Rates of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measures the rate of change of a quantity over an interval</td>
<td>Measures the rate of change of a quantity at a point</td>
</tr>
<tr>
<td>Slope of a secant line</td>
<td>Slope of the tangent line</td>
</tr>
<tr>
<td>Requires data points or a continuous curve to calculate</td>
<td>Requires a continuous smooth curve to calculate</td>
</tr>
</tbody>
</table>

Equivalent Terminology

All of the following phrases mean the same.

- Instantaneous rate of change
- Rate of change
Average vs. Instantaneous Rates of Change

<table>
<thead>
<tr>
<th>Average Rates of Change</th>
<th>Instantaneous Rates of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measures the rate of change of a quantity over an interval</td>
<td>Measures the rate of change of a quantity at a point</td>
</tr>
<tr>
<td>Slope of a secant line</td>
<td>Slope of the tangent line</td>
</tr>
<tr>
<td>Requires data points or a continuous curve to calculate</td>
<td>Requires a continuous smooth curve to calculate</td>
</tr>
</tbody>
</table>

Equivalent Terminology

All of the following phrases mean the same.

- Instantaneous rate of change
- rate of change
- slope of the curve
Average vs. Instantaneous Rates of Change

<table>
<thead>
<tr>
<th>Average Rates of Change</th>
<th>Instantaneous Rates of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measures the rate of change of a quantity over an interval</td>
<td>Measures the rate of change of a quantity at a point</td>
</tr>
<tr>
<td>Slope of a secant line</td>
<td>Slope of the tangent line</td>
</tr>
<tr>
<td>Requires data points or a continuous curve to calculate</td>
<td>Requires a continuous smooth curve to calculate</td>
</tr>
</tbody>
</table>

Equivalent Terminology

All of the following phrases mean the same.

- Instantaneous rate of change
- rate of change
- slope of the curve
- slope of the tangent line
Average vs. Instantaneous Rates of Change

<table>
<thead>
<tr>
<th>Average Rates of Change</th>
<th>Instantaneous Rates of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measures the rate of change of a quantity over an interval</td>
<td>Measures the rate of change of a quantity at a point</td>
</tr>
<tr>
<td>Slope of a secant line</td>
<td>Slope of the tangent line</td>
</tr>
<tr>
<td>Requires data points or a continuous curve to calculate</td>
<td>Requires a continuous smooth curve to calculate</td>
</tr>
</tbody>
</table>

Equivalent Terminology

All of the following phrases mean the same.

- Instantaneous rate of change
- rate of change
- slope of the curve
- slope of the tangent line
- derivative
Derivative Notation

We have several notations for the derivative of $f(t)$ with respect to t, namely $\frac{df}{dt}$, $f'(t)$, $\frac{d}{dt} [f(t)]$.

Note that here f is the output variable (or function) and t is the input variable.

Interpreting Derivatives

When discussing instantaneous rate or change at a point (or the derivative of a function at a point), be sure to include the following information.

1. Specify the input value.
2. Specify the quantity that is changing.
3. Indicate whether the change is a decrease or increase.
4. Give the numerical answer labeled with proper units.
5. The units for the derivative should be the output units per one input unit (as for average rate of change).
Derivative Notation

We have several notations for the derivative of $f(t)$ with respect to t, namely $\frac{df}{dt}$, $f'(t)$, $\frac{d}{dt}[f(t)]$. Note that here f is the output variable (or function) and t is the input variable.

Interpreting Derivatives

When discussing instantaneous rate of change at a point (or the derivative of a function at a point), be sure to include the following information.

1. Specify the input value.
2. Specify the quantity that is changing.
3. Indicate whether the change is a decrease or increase.
4. Give the numerical answer labeled with proper units.
5. The units for the derivative should be the output units per one input unit (as for average rate of change).
Derivative Notation

We have several notations for the derivative of \(f(t) \) with respect to \(t \), namely \(\frac{df}{dt}, f'(t), \frac{d}{dt} [f(t)] \). Note that here \(f \) is the output variable (or function) and \(t \) is the input variable.

Interpreting Derivatives

When discussing instantaneous rate or change at a point (or the derivative of a function at a point), be sure to include the following information.

1. Specify the input value.
Derivative Notation

We have several notations for the derivative of \(f(t) \) with respect to \(t \), namely \(\frac{df}{dt} \), \(f'(t) \), \(\frac{d}{dt} [f(t)] \).

Note that here \(f \) is the output variable (or function) and \(t \) is the input variable.

Interpreting Derivatives

When discussing instantaneous rate or change at a point (or the derivative of a function at a point), be sure to include the following information.

1. Specify the input value.
2. Specify the quantity that is changing.
Derivative Notation

We have several notations for the derivative of $f(t)$ with respect to t, namely $\frac{df}{dt}$, $f'(t)$, $\frac{d}{dt}[f(t)]$. Note that here f is the output variable (or function) and t is the input variable.

Interpreting Derivatives

When discussing instantaneous rate or change at a point (or the derivative of a function at a point), be sure to include the following information.

1. Specify the input value.
2. Specify the quantity that is changing.
3. Indicate whether the change is a decrease or increase.
Derivative Notation

We have several notations for the derivative of $f(t)$ with respect to t, namely $\frac{df}{dt}$, $f'(t)$, $\frac{d}{dt}[f(t)]$. Note that here f is the output variable (or function) and t is the input variable.

Interpreting Derivatives

When discussing instantaneous rate or change at a point (or the derivative of a function at a point), be sure to include the following information.

1. Specify the input value.
2. Specify the quantity that is changing.
3. Indicate whether the change is a decrease or increase.
4. Give the numerical answer labeled with proper units.
Derivative Notation

We have several notations for the derivative of $f(t)$ with respect to t, namely $\frac{df}{dt}$, $f'(t)$, $\frac{d}{dt} [f(t)]$. Note that here f is the output variable (or function) and t is the input variable.

Interpreting Derivatives

When discussing instantaneous rate or change at a point (or the derivative of a function at a point), be sure to include the following information.

1. Specify the input value.
2. Specify the quantity that is changing.
3. Indicate whether the change is a decrease or increase.
4. Give the numerical answer labeled with proper units.
5. The units for the derivative should be the output units per one input unit (as for average rate of change).
Note

We can tell a lot about the graph of a smooth continuous function from the values of its derivative.

- Where $f'(x) = 0$, the graph of $f(x)$ has a horizontal tangent line.
- Where $f'(x) > 0$, the graph of $f(x)$ is increasing and the steepness is given by $f'(x)$.
- Where $f'(x) < 0$, the graph of $f(x)$ is decreasing and the steepness is given by $|f'(x)|$.
- The point of most rapid increase/decrease of $f(x)$ (i.e., the max/min of $f'(x)$) occurs at an inflection point of the graph of $f(x)$.

1. To the left of the point of most rapid increase, the graph of $f(x)$ is concave up. To the right of the point of most rapid increase, the graph of $f(x)$ will be concave down.

2. To the left of the point of most rapid decrease, the graph of $f(x)$ is concave down. To the right of the point of most rapid decrease, the graph of $f(x)$ is concave up.
We can tell a lot about the graph of a smooth continuous function from the values of its derivative.

- Where $f'(x) = 0$, the graph of $f(x)$ has a horizontal tangent line.
- Where $f'(x) > 0$, the graph of $f(x)$ is increasing and the steepness is given by $f'(x)$.
- The point of most rapid increase/decrease of $f(x)$ (-i.e. the max/min of $f'(x)$) occurs at an inflection point of the graph of $f(x)$.

To the left of the point of most rapid increase the graph of $f(x)$ is concave up. To the right of the point of most rapid increase the graph of $f(x)$ will be concave down.

To the left of the point of most rapid decrease, the graph of $f(x)$ is concave down. To the right of the point of most rapid decrease, the graph of $f(x)$ is concave up.
We can tell a lot about the graph of a smooth continuous function from the values of its derivative.

- Where $f'(x) = 0$, the graph of $f(x)$ has a horizontal tangent line.
- Where $f'(x) > 0$, the graph of $f(x)$ is increasing and the steepness is given by $f'(x)$.
- Where $f'(x) < 0$, the graph of $f(x)$ is decreasing and the steepness is given by $|f'(x)|$.
We can tell a lot about the graph of a smooth continuous function from the values of its derivative.

- Where $f'(x) = 0$, the graph of $f(x)$ has a horizontal tangent line.
- Where $f'(x) > 0$, the graph of $f(x)$ is increasing and the steepness is given by $f'(x)$.
- Where $f'(x) < 0$, the graph of $f(x)$ is decreasing and the steepness is given by $|f'(x)|$.
- The point of most rapid increase/decrease of $f(x)$ (-i.e. the max/min of $f'(x)$) occurs at an inflection point of the graph of $f(x)$.

1 To the left of the point of most rapid increase the graph of $f(x)$ is concave up. To the right of the point of most rapid increase the graph of $f(x)$ will be concave down.
We can tell a lot about the graph of a smooth continuous function from the values of its derivative.

- Where $f'(x) = 0$, the graph of $f(x)$ has a horizontal tangent line.
- Where $f'(x) > 0$, the graph of $f(x)$ is increasing and the steepness is given by $f'(x)$.
- Where $f'(x) < 0$, the graph of $f(x)$ is decreasing and the steepness is given by $|f'(x)|$.
- The point of most rapid increase/decrease of $f(x)$ (-i.e. the max/min of $f'(x)$) occurs at an inflection point of the graph of $f(x)$.

1. To the left of the point of most rapid increase the graph of $f(x)$ is concave up. To the right of the point of most rapid increase the graph of $f(x)$ will be concave down.
2. To the left of the point of most rapid decrease, the graph of $f(x)$ is concave down. To the right of the point of most rapid decrease, the graph of $f(x)$ is concave up.