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Finding the slope of the tangent line numerically

Note

The line secant to y = f (x) and passing through P = (a, f (a)) and
Q = (b, f (b)) has slope

slope =
f (b)− f (a)

b − a

Estimating the slope of the tangent line

1 Calculate the slope of the secant line passing through P and several
nearby points Qi = (bi , f (bi )) (i = 1, 2, 3, . . . ) to the left of P.

2
Does the slope seem to be getting close to some value as Qi approaches
P? If so, what value?

3 Calculate the slope of the secant line passing through P and several
nearby points Qi = (bi , f (bi )) (i = 1, 2, 3, . . . ) to the right of P.

4
Does the slope seem to be getting close to some value as Qi approaches
P? If so, what value?

5 If you obtained values for 2 and 4 and if they are the same, their common
value is a good estimate for the slope of the tangent line.
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Example

A company invests $32 billiion of its assets electronically in the
global market, resulting in an investment with continuous
compounding at 12% per year APY.
Note that the value of such an investment after t years is given by
A(t) = 32 · (1.12)t billion dollars.

1 How rapidly is the investment growing at the middle of the
fifth year (-i.e. t = 4.5)?

2 At what percentage rate of change is this investment growing?
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Existence of Instantaneous Rate of Change

Definition

A piecewise continuous function is a function that is continuous
over different intervals but has a break point. It is often defined by
different equations over different intervals.
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Example

For example the function

f (x) =

{

−0.129t2 + 2.25 − 3.88 when 5 ≤ t ≤ 9,

0.536t + 0.72 when 9 ≤ t ≤ 10.

has the following graph.

At the point (9, f (9)), the tangent line is not well defined.
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Definition

We call a point P on the graph of a continuous function f a
sharp point when the secant lines joining P to close points on
either side of it have different limiting positions.

Note

If a function is not continuous or if its graph has a sharp point at
(a, f (a)), the rate of change (or derivative) does not exist at the
point (a, f (a)).
If a continuous function has a point (a, f (a)) where the tangent
line is vertical, the rate of change does not exist at (a, f (a)).
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Definition

A function f is differentiable at P if the instantaneous rate of
change (derivative) of f exists at P .
A function f is differentiable on an open interval if it is
differentiable at each point in the interval.
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