MTHSC 102 Section 3.1-2 – Simple Rate of Change Formulas

Kevin James

Kevin James MTHSC 102 Section 3.1-2 – Simple Rate of Change Formulas

個 と く ヨ と く ヨ と

SIMPLE DERIVATIVE RULES

Rule Name	Function	Derivative
Constant Rule	f(x) = b	f'(x) = 0
Linear Function Rule	f(x) = ax + b	f'(x) = a
Power Rule	$f(x) = x^n$	$f'(x) = nx^{n-1}$
Constant Multiple Rule	f(x) = kg(x)	f'(x) = kg'(x)
Sum Rule	f(x) = g(x) + h(x)	f'(x) = g'(x) + h'(x)
Difference Rule	f(x) = g(x) - h(x)	f'(x) = g'(x) - h'(x)
Exponential Rule	$f(x) = b^x \ (b > 0)$	$f'(x) = (\ln b)b^x$
<i>e</i> [×] Rule	$f(x) = e^x$	$f'(x) = e^x$
Natural Log Rule	$f(x) = \ln(x), \ (x > 0)$	$f'(x) = \frac{1}{x}$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

ALTERNATIVE SIMPLE DERIVATIVE RULES

Rule Name	Rule	
Constant Rule	$\frac{d}{dx}[b] = 0$	
Linear Function Rule	$\frac{\mathrm{d}}{\mathrm{d}\mathrm{x}}[a\mathrm{x}+b]=a$	
Power Rule	$\frac{\mathrm{d}}{\mathrm{d}x}[x^n] = nx^{n-1}$	
Constant Multiple Rule	$\frac{\mathrm{d}}{\mathrm{d}x}[kf(x)] = k\frac{\mathrm{d}}{\mathrm{d}x}[f(x)]$	
Sum Rule	$\frac{\mathrm{d}}{\mathrm{d}x}[f(x) + g(x)] = \frac{\mathrm{d}}{\mathrm{d}x}[f(x)] + \frac{\mathrm{d}}{\mathrm{d}x}[g(x)]$	
Difference Rule	$\frac{\mathrm{d}}{\mathrm{d}x}[f(x) - g(x)]\frac{\mathrm{d}}{\mathrm{d}x}[f(x)] - \frac{\mathrm{d}}{\mathrm{d}x}[g(x)]$	
Exponential Rule	If $b > 0$, $\frac{\mathrm{d}}{\mathrm{dx}}[b^{\mathrm{x}}] = (\ln b)b^{\mathrm{x}}$	
e^{\times} Rule	$\frac{\mathrm{d}}{\mathrm{d}\mathrm{x}}[e^{\mathrm{x}}]=e^{\mathrm{x}}$	
Natural Log Rule	If $x > 0$, $\frac{\mathrm{d}}{\mathrm{dx}}[\ln(x)] = \frac{1}{x}$	

◆□> ◆□> ◆目> ◆目> ◆目 ● のへで

EXAMPLE

Suppose that $f(x) = 3x^3 - 4x^2 + 3x + 5e^x - 8\ln(x)$. Give a formula for f'(x).

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●