MTHSC 102 SECTION 3.1-2 – SIMPLE RATE OF CHANGE FORMULAS

Kevin James

Rule Name	Function	Derivative
Constant Rule	f(x) = b	f'(x)=0

Rule Name	Function	Derivative
Constant Rule	f(x) = b	f'(x)=0
Linear Function Rule	f(x) = ax + b	f'(x) = a

Rule Name	Function	Derivative
Constant Rule	f(x) = b	f'(x) = 0
Linear Function Rule	f(x) = ax + b	f'(x) = a
Power Rule	$f(x) = x^n$	$f'(x) = nx^{n-1}$

Function	Derivative
f(x) = b	f'(x)=0
f(x) = ax + b	f'(x) = a
$f(x) = x^n$	$f'(x) = nx^{n-1}$
f(x) = kg(x)	f'(x) = kg'(x)
	$f(x) = b$ $f(x) = ax + b$ $f(x) = x^{n}$

Rule Name	Function	Derivative
Constant Rule	f(x) = b	f'(x)=0
Linear Function Rule	f(x) = ax + b	f'(x) = a
Power Rule	$f(x) = x^n$	$f'(x) = nx^{n-1}$
Constant Multiple Rule	f(x) = kg(x)	f'(x) = kg'(x)
Sum Rule	f(x) = g(x) + h(x)	f'(x) = g'(x) + h'(x)

Rule Name	Function	Derivative
Constant Rule	f(x) = b	f'(x)=0
Linear Function Rule	f(x) = ax + b	f'(x) = a
Power Rule	$f(x) = x^n$	$f'(x) = nx^{n-1}$
Constant Multiple Rule	f(x) = kg(x)	f'(x) = kg'(x)
Sum Rule	f(x) = g(x) + h(x)	f'(x) = g'(x) + h'(x)
Difference Rule	f(x) = g(x) - h(x)	f'(x) = g'(x) - h'(x)

Rule Name	Function	Derivative
Constant Rule	f(x) = b	f'(x)=0
Linear Function Rule	f(x) = ax + b	f'(x) = a
Power Rule	$f(x) = x^n$	$f'(x) = nx^{n-1}$
Constant Multiple Rule	f(x) = kg(x)	f'(x) = kg'(x)
Sum Rule	f(x) = g(x) + h(x)	f'(x) = g'(x) + h'(x)
Difference Rule	f(x) = g(x) - h(x)	f'(x) = g'(x) - h'(x)
Exponential Rule	$f(x) = b^x \ (b > 0)$	$f'(x) = (\ln b)b^x$

Rule Name	Function	Derivative
Constant Rule	f(x) = b	f'(x)=0
Linear Function Rule	f(x) = ax + b	f'(x) = a
Power Rule	$f(x) = x^n$	$f'(x) = nx^{n-1}$
Constant Multiple Rule	f(x) = kg(x)	f'(x) = kg'(x)
Sum Rule	f(x) = g(x) + h(x)	f'(x) = g'(x) + h'(x)
Difference Rule	f(x) = g(x) - h(x)	f'(x) = g'(x) - h'(x)
Exponential Rule	$f(x)=b^{x}\ (b>0)$	$f'(x) = (\ln b)b^x$
e ^x Rule	$f(x) = e^x$	$f'(x) = e^x$

Rule Name	Function	Derivative
Constant Rule	f(x) = b	f'(x)=0
Linear Function Rule	f(x) = ax + b	f'(x) = a
Power Rule	$f(x) = x^n$	$f'(x) = nx^{n-1}$
Constant Multiple Rule	f(x) = kg(x)	f'(x) = kg'(x)
Sum Rule	f(x) = g(x) + h(x)	f'(x) = g'(x) + h'(x)
Difference Rule	f(x) = g(x) - h(x)	f'(x) = g'(x) - h'(x)
Exponential Rule	$f(x) = b^x \ (b > 0)$	$f'(x) = (\ln b)b^x$
e ^x Rule	$f(x) = e^x$	$f'(x) = e^x$
Natural Log Rule	$f(x) = \ln(x), \ (x > 0)$	$f'(x) = \frac{1}{x}$

Rule Name	Rule
Constant Rule	$\frac{d}{dx}[b] = 0$

Rule Name	Rule	
Constant Rule	$\frac{d}{dx}[b] = 0$	
Linear Function Rule	$\frac{d}{dx}[ax+b]=a$	

Rule Name	Rule
Constant Rule	$\frac{d}{dx}[b] = 0$
Linear Function Rule	$\frac{d}{dx}[ax+b]=a$
Power Rule	$\frac{d}{dx}[x^n] = nx^{n-1}$

Rule Name	Rule
Constant Rule	$\frac{d}{dx}[b] = 0$
Linear Function Rule	$\frac{d}{dx}[ax+b]=a$
Power Rule	$\frac{d}{dx}[x^n] = nx^{n-1}$
Constant Multiple Rule	$\frac{d}{dx}[kf(x)] = k\frac{d}{dx}[f(x)]$

Rule Name	Rule
Constant Rule	$\frac{d}{dx}[b] = 0$
Linear Function Rule	$\frac{d}{dx}[ax+b]=a$
Power Rule	$\frac{d}{dx}[x^n] = nx^{n-1}$
Constant Multiple Rule	$\frac{d}{dx}[kf(x)] = k\frac{d}{dx}[f(x)]$
Sum Rule	$\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]$

Rule Name	Rule
Constant Rule	$\frac{d}{dx}[b] = 0$
Linear Function Rule	$\frac{d}{dx}[ax+b]=a$
Power Rule	$\frac{d}{dx}[x^n] = nx^{n-1}$
Constant Multiple Rule	$\frac{d}{dx}[kf(x)] = k\frac{d}{dx}[f(x)]$
Sum Rule	$\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]$
Difference Rule	$\frac{d}{dx}[f(x) - g(x)]\frac{d}{dx}[f(x)] - \frac{d}{dx}[g(x)]$

Rule Name	Rule
Constant Rule	$\frac{d}{dx}[b] = 0$
Linear Function Rule	$\frac{d}{dx}[ax+b]=a$
Power Rule	$\frac{\mathrm{d}}{\mathrm{dx}}[x^n] = nx^{n-1}$
Constant Multiple Rule	$\frac{d}{dx}[kf(x)] = k\frac{d}{dx}[f(x)]$
Sum Rule	$\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]$
Difference Rule	$\frac{d}{dx}[f(x) - g(x)]\frac{d}{dx}[f(x)] - \frac{d}{dx}[g(x)]$
Exponential Rule	If $b > 0$, $\frac{d}{dx}[b^x] = (\ln b)b^x$

Rule Name	Rule
Constant Rule	$\frac{d}{dx}[b] = 0$
Linear Function Rule	$\frac{d}{dx}[ax+b]=a$
Power Rule	$\frac{d}{dx}[x^n] = nx^{n-1}$
Constant Multiple Rule	$\frac{d}{dx}[kf(x)] = k\frac{d}{dx}[f(x)]$
Sum Rule	$\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]$
Difference Rule	$\frac{d}{dx}[f(x) - g(x)]\frac{d}{dx}[f(x)] - \frac{d}{dx}[g(x)]$
Exponential Rule	If $b > 0$, $\frac{d}{dx}[b^x] = (\ln b)b^x$
e ^x Rule	$\frac{d}{dx}[e^x] = e^x$

Rule Name	Rule
Constant Rule	$\frac{d}{dx}[b] = 0$
Linear Function Rule	$\frac{\frac{d}{dx}[ax+b] = a}{\frac{d}{dx}[x^n] = nx^{n-1}}$
Power Rule	$\frac{d}{dx}[x^n] = nx^{n-1}$
Constant Multiple Rule	$\frac{d}{dx}[kf(x)] = k\frac{d}{dx}[f(x)]$
Sum Rule	$\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]$
Difference Rule	$\frac{d}{dx}[f(x) - g(x)]\frac{d}{dx}[f(x)] - \frac{d}{dx}[g(x)]$
Exponential Rule	If $b > 0$, $\frac{d}{dx}[b^x] = (\ln b)b^x$
e ^x Rule	$\frac{d}{dx}[e^x] = e^x$
Natural Log Rule	If $x > 0$, $\frac{d}{dx}[\ln(x)] = \frac{1}{x}$

EXAMPLE

Suppose that $f(x) = 3x^3 - 4x^2 + 3x + 5e^x - 8\ln(x)$. Give a formula for f'(x).