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Definition (Relative Extreme Points and Relative
Extreme Values)

Suppose that f (x) is a function defined on an interval I .

1 We say that f attains a relative maximum value of f (a) at
x = a if there is some interval (b, c) with b < a < c and such
that for all x ∈ (b, c), f (x) ≤ f (a).
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Definition (Relative Extreme Points and Relative
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Suppose that f (x) is a function defined on an interval I .

1 We say that f attains a relative maximum value of f (a) at
x = a if there is some interval (b, c) with b < a < c and such
that for all x ∈ (b, c), f (x) ≤ f (a).
In this case, the point (a, f (a)) is called a
relative maximum point.
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Definition (Relative Extreme Points and Relative
Extreme Values)

Suppose that f (x) is a function defined on an interval I .

1 We say that f attains a relative maximum value of f (a) at
x = a if there is some interval (b, c) with b < a < c and such
that for all x ∈ (b, c), f (x) ≤ f (a).
In this case, the point (a, f (a)) is called a
relative maximum point.

2 We say that f attains a relative minimum value of f (a) at
x = a if there is some interval (b, c) with b < a < c and such
that for all x ∈ (b, c), f (x) ≥ f (a).
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Definition (Relative Extreme Points and Relative
Extreme Values)

Suppose that f (x) is a function defined on an interval I .

1 We say that f attains a relative maximum value of f (a) at
x = a if there is some interval (b, c) with b < a < c and such
that for all x ∈ (b, c), f (x) ≤ f (a).
In this case, the point (a, f (a)) is called a
relative maximum point.

2 We say that f attains a relative minimum value of f (a) at
x = a if there is some interval (b, c) with b < a < c and such
that for all x ∈ (b, c), f (x) ≥ f (a).
In this case, the point (a, f (a)) is called a
relative minimum point.
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Fact

If f is a smooth continuous function and if f attains a relative

extreme value at x = a, then the derivative f ′ crosses the input

axis at x = a and thus f ′(a) = 0.
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Fact

If f is a smooth continuous function and if f attains a relative

extreme value at x = a, then the derivative f ′ crosses the input

axis at x = a and thus f ′(a) = 0.

Definition

A critical point of a continuous function f is a point (c , f (c)) for
which either f ′(c) does not exist or for which f ′(c) = 0.
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Fact

If f is a smooth continuous function and if f attains a relative

extreme value at x = a, then the derivative f ′ crosses the input

axis at x = a and thus f ′(a) = 0.

Definition

A critical point of a continuous function f is a point (c , f (c)) for
which either f ′(c) does not exist or for which f ′(c) = 0.
The input value c of a critical point (c , f (c)) is referred to as a
critical input or critical number.
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Example

Consider the function

f (x) = x3 − 6x2 + 9x − 2.
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Example

Consider the function

f (x) = x3 − 6x2 + 9x − 2.

The graph of this function and its derivative are

Find all relative extreme points of f .
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Note

Relative extrema do not occur if the derivative touches the input
axis but does not cross it. That is, f ′(a) may be zero even when f

does not attain a relative extreme at x = a.
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Note

Relative extrema do not occur if the derivative touches the input
axis but does not cross it. That is, f ′(a) may be zero even when f

does not attain a relative extreme at x = a.

First Deivative Test for Relative Extrema

Suppose that c is a critical number of a continuous function f .

1 If f ′ changes from positive to negative at c , then f (c) is a
relative maximum value of f .
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Note

Relative extrema do not occur if the derivative touches the input
axis but does not cross it. That is, f ′(a) may be zero even when f

does not attain a relative extreme at x = a.

First Deivative Test for Relative Extrema

Suppose that c is a critical number of a continuous function f .

1 If f ′ changes from positive to negative at c , then f (c) is a
relative maximum value of f .

2 If f ′ changes from negative to positive at c , then f (c) is a
relative minimum value of f .
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Note

Relative extrema do not occur if the derivative touches the input
axis but does not cross it. That is, f ′(a) may be zero even when f

does not attain a relative extreme at x = a.

First Deivative Test for Relative Extrema

Suppose that c is a critical number of a continuous function f .

1 If f ′ changes from positive to negative at c , then f (c) is a
relative maximum value of f .

2 If f ′ changes from negative to positive at c , then f (c) is a
relative minimum value of f .

3 If f ′ does not change sign at c , then f does not attain a
relative extreme value at c .
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Conditions For Existence of Relative Extrema

For a function f with input x , a relative extreme can occur at
x = c only if f (c) exists. Furthermore,

1 A relative extreme exists where f ′(c) = 0 and the graph of
f ′(x) crosses the input axis at x = c .
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Conditions For Existence of Relative Extrema

For a function f with input x , a relative extreme can occur at
x = c only if f (c) exists. Furthermore,

1 A relative extreme exists where f ′(c) = 0 and the graph of
f ′(x) crosses the input axis at x = c .

2 A relative extreme can exist where f (c) exists but f ′(c) does
not.

Kevin James MTHSC 102 Section 4.2 – Relative Extreme Points



Example

Consider the function

f (x) =

{

x3 − 12x + 17 if x ≤ 1,

x2 + 5 if x > 1.
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Example

Consider the function

f (x) =

{

x3 − 12x + 17 if x ≤ 1,

x2 + 5 if x > 1.

The graph of this function and its derivative are

Find all relative extreme points of f .
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Finding Extrema

To find the relative maxima and minima of a function f ,

1 Determine the input values for which f ′ = 0 or f ′ is undefined.

2 Examine a graph of f to determine which of these input
values correspond to relative maxima or relative minima.
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Example

The number of consumer complaints to the US Department of
Transportation about baggage on US airlines between 1989 and
2000 can be modeled by the function

B(x) = 55.15x2 − 524.09x + 1768.65 complaints,

where x is the number of years after 1989.

1 The graph of the function is

2 Find the relative extrema of B .
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