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Definition (Relative Extreme Points and Relative
Extreme Values)

Suppose that f (x) is a function defined on an interval I (possibly
I = (−∞,∞).

1 We say that f attains an absolute maximum value on I of
f (a) at x = a if for all x ∈ I , f (x) ≤ f (a).
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Definition (Relative Extreme Points and Relative
Extreme Values)

Suppose that f (x) is a function defined on an interval I (possibly
I = (−∞,∞).

1 We say that f attains an absolute maximum value on I of
f (a) at x = a if for all x ∈ I , f (x) ≤ f (a).
In this case, the point (a, f (a)) is called an
absolute maximum point.
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Definition (Relative Extreme Points and Relative
Extreme Values)

Suppose that f (x) is a function defined on an interval I (possibly
I = (−∞,∞).

1 We say that f attains an absolute maximum value on I of
f (a) at x = a if for all x ∈ I , f (x) ≤ f (a).
In this case, the point (a, f (a)) is called an
absolute maximum point.

2 We say that f attains an absolute minimum value on I of
f (a) at x = a if for all x ∈ I , f (x) ≥ f (a).
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Definition (Relative Extreme Points and Relative
Extreme Values)

Suppose that f (x) is a function defined on an interval I (possibly
I = (−∞,∞).

1 We say that f attains an absolute maximum value on I of
f (a) at x = a if for all x ∈ I , f (x) ≤ f (a).
In this case, the point (a, f (a)) is called an
absolute maximum point.

2 We say that f attains an absolute minimum value on I of
f (a) at x = a if for all x ∈ I , f (x) ≥ f (a).
In this case, the point (a, f (a)) is called an
absolute maximum point.

Kevin James MTHSC 102 Section 4.3 – Absolute Extreme Points



Absolute Extrema on Closed Intervals

Note

To find the absolute extrema of a continuous function f on a
closed interval [a, b]:

1 Find all relative extrema of f in [a, b].

Kevin James MTHSC 102 Section 4.3 – Absolute Extreme Points



Absolute Extrema on Closed Intervals

Note

To find the absolute extrema of a continuous function f on a
closed interval [a, b]:

1 Find all relative extrema of f in [a, b].

2 Compute f (a), f (b) and f (c) for all locations a < c < b of
relative extrema in [a, b]. The largest value is the absolute
maximum of f on [a, b] and the smallest value is the absolute
minimum of f on [a, b].
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Example

Consider the function

f (x) = x
3
− 6x2 + 9x − 2.
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Example

Consider the function

f (x) = x
3
− 6x2 + 9x − 2.

The graph of this function and its derivative are

Find all relative and absolute extreme points of f in the interval
[−0.5, 3.5].
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Example

Consider the function

f (x) =

{

x
3 − 12x + 17 if x ≤ 1,

x
2 + 5 if x > 1.
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Example

Consider the function

f (x) =

{

x
3 − 12x + 17 if x ≤ 1,

x
2 + 5 if x > 1.

The graph of this function and its derivative are

Find all relative and absolute extreme points of f in the interval
[−4, 4].
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Absolute Extrema for Unbounded Input
Values

Note

If f is a continuous function and we consider its behavior over all
real inputs, it is possible that f does not have a absolute max or
absolute min (or both).
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Absolute Extrema for Unbounded Input
Values

Note

If f is a continuous function and we consider its behavior over all
real inputs, it is possible that f does not have a absolute max or
absolute min (or both).

Example
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Finding Extrema

To find the relative maxima and minima of a function f ,

1 Determine the input values for which f
′ = 0 of f ′ is undefined.

2 Examine a graph of f to determine which of these input
values correspond to relative extrema.
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Finding Extrema

To find the relative maxima and minima of a function f ,

1 Determine the input values for which f
′ = 0 of f ′ is undefined.

2 Examine a graph of f to determine which of these input
values correspond to relative extrema.

To find the absolute maximum and minimum of a function f on an
interval [a, b].

1 Find all relative extrema of f in the interval (as above).

2 Compare the relative extreme values in the interval and f (a)
and f (b). The largest value is the absolute maximum value
and the smallest value is the absoluet minimum.
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Finding Extrema

To find the relative maxima and minima of a function f ,

1 Determine the input values for which f
′ = 0 of f ′ is undefined.

2 Examine a graph of f to determine which of these input
values correspond to relative extrema.

To find the absolute maximum and minimum of a function f on an
interval [a, b].

1 Find all relative extrema of f in the interval (as above).

2 Compare the relative extreme values in the interval and f (a)
and f (b). The largest value is the absolute maximum value
and the smallest value is the absoluet minimum.

To find the absolute maximum and minimum of a continuous
function f without a specified interval.

1 Find all relative extrema of f .

2 Determine the end behavior of the function in both directions.
The absolute extrema either do not exist or are among the
relative extrema.
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Example

The number of consumer complaints to the US Department of
Transportation about baggage on US airlines between 1989 and
2000 can be modeled by the function

B(x) = 55.15x2 − 524.09x + 1768.65 complaints,

where x is the number of years after 1989.

1 The graph of the function is

2 Find the relative and absolute maxima and minima on the
interval 0 ≤ x ≤ 11.

Kevin James MTHSC 102 Section 4.3 – Absolute Extreme Points


