MTHSC 102 SECTION 1.4 – LOGISTIC FUNCTIONS AND MODELS

Kevin James

DEFINITION

A logistic function is a function which initially experiences exponential growth or decay, but has bounded output over its lifetime.

DEFINITION

A logistic function is a function which initially experiences exponential growth or decay, but has bounded output over its lifetime.

A logistic model has an equation of the form $f(x) = \frac{L}{1 + Ae^{-Bx}}$, where L is the limiting value of the function and A and B are nonzero constants.

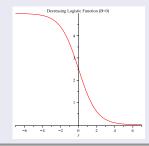
DEFINITION

A logistic function is a function which initially experiences exponential growth or decay, but has bounded output over its lifetime.

A logistic model has an equation of the form $f(x) = \frac{L}{1 + Ae^{-Bx}}$, where L is the limiting value of the function and A and B are nonzero constants.

A logistic function has one of the following forms.





The following table shows the number of bacteria present in a biology experiment d days after the beginning of the experiment.

Day	1	2	3	4	5	6	7	8	9
Amount	4	15	52	165	391	619	733	771	782

The following table shows the number of bacteria present in a biology experiment d days after the beginning of the experiment.

Day	1	2	3	4	5	6	7	8	9
Amount	4	15	52	165	391	619	733	771	782

1 Find a logistic model that fits the data.

The following table shows the number of bacteria present in a biology experiment d days after the beginning of the experiment.

Day	1	2	3	4	5	6	7	8	9
Amount	4	15	52	165	391	619	733	771	782

- 1 Find a logistic model that fits the data.
- 2 What is the end behavior of the model as time increases.

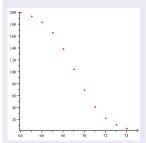
Of a group of 200 college men surveyed, the number who were taller than a given number of inches is recorded below.

Inches	64	65	66	67	68	69	70	71	72	73	74	75
Number of												
Men	200	194	184	166	139	105	70	42	23	12	6	3

Of a group of 200 college men surveyed, the number who were taller than a given number of inches is recorded below.

Inches		64	65	66	67	68	69	70	71	72	73	74	75
Numbe	r of												
Men		200	194	184	166	139	105	70	42	23	12	6	3

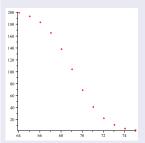
A scatter plot of the data looks like



Of a group of 200 college men surveyed, the number who were taller than a given number of inches is recorded below.

Inches	64	65	66	67	68	69	70	71	72	73	74	75
Number of												
Men	200	194	184	166	139	105	70	42	23	12	6	3

A scatter plot of the data looks like



Align the input data by subtracting 65 and give a model for the resulting data.

DEFINITION

We write

① $\lim_{x\to\infty} f(x) = \infty$ if f increases without bound as x gets large and positive.

DEFINITION

- ① $\lim_{x\to\infty} f(x) = \infty$ if f increases without bound as x gets large and positive.
- 2 $\lim_{x\to\infty} f(x) = -\infty$ if f decreases without bound as x gets large and positive.

DEFINITION

- 1 $\lim_{x\to\infty} f(x) = \infty$ if f increases without bound as x gets large and positive.
- 2 $\lim_{x\to\infty} f(x) = -\infty$ if f decreases without bound as x gets large and positive.
- 3 $\lim_{x\to\infty} f(x) = L$ if f approaches L as x gets large and positive. Note that this means that f has a horizontal asymptote at y = L.

Definition

- 1 $\lim_{x\to\infty} f(x) = \infty$ if f increases without bound as x gets large and positive.
- 2 $\lim_{x\to\infty} f(x) = -\infty$ if f decreases without bound as x gets large and positive.
- 3 $\lim_{x\to\infty} f(x) = L$ if f approaches L as x gets large and positive. Note that this means that f has a horizontal asymptote at y = L.
- 4 $\lim_{x\to -\infty} f(x) = \infty$ if f increases without bound as x gets large and negative.

Definition

- 1 $\lim_{x\to\infty} f(x) = \infty$ if f increases without bound as x gets large and positive.
- 2 $\lim_{x\to\infty} f(x) = -\infty$ if f decreases without bound as x gets large and positive.
- 3 $\lim_{x\to\infty} f(x) = L$ if f approaches L as x gets large and positive. Note that this means that f has a horizontal asymptote at y = L.
- 4 $\lim_{x\to -\infty} f(x) = \infty$ if f increases without bound as x gets large and negative.
- **5** $\lim_{x\to -\infty} f(x) = -\infty$ if f decreases without bound as x gets large and negative.

Definition

- 1 $\lim_{x\to\infty} f(x) = \infty$ if f increases without bound as x gets large and positive.
- 2 $\lim_{x\to\infty} f(x) = -\infty$ if f decreases without bound as x gets large and positive.
- 3 $\lim_{x\to\infty} f(x) = L$ if f approaches L as x gets large and positive. Note that this means that f has a horizontal asymptote at y = L.
- 4 $\lim_{x\to -\infty} f(x) = \infty$ if f increases without bound as x gets large and negative.
- **6** $\lim_{x\to -\infty} f(x) = -\infty$ if f decreases without bound as x gets large and negative.
- **6** $\lim_{x\to -\infty} f(x) = L$ if f approaches L as x gets large and negative. Note that this means that f has a horizontal asymptote at y=L.

- 1 $\lim_{x\to\infty} 3x + 1 =$ _____
- ② $\lim_{x \to -\infty} 3x + 1 =$ _____

1
$$\lim_{x\to\infty} 3x + 1 =$$

2
$$\lim_{x \to -\infty} 3x + 1 = \underline{\hspace{1cm}}$$

1
$$\lim_{x\to\infty} 3x + 1 =$$

2
$$\lim_{x \to -\infty} 3x + 1 = \underline{\hspace{1cm}}$$

3
$$\lim_{x\to\infty} e^x =$$

1
$$\lim_{x\to\infty} 3x + 1 =$$

2
$$\lim_{x \to -\infty} 3x + 1 = \underline{\hspace{1cm}}$$

3
$$\lim_{x\to\infty} e^x =$$

4
$$\lim_{x \to -\infty} 3^x =$$

6
$$\lim_{x\to\infty} \frac{10}{1+e^{-x}} = \underline{\hspace{1cm}}$$

1
$$\lim_{x\to\infty} 3x + 1 =$$

$$3 \lim_{x\to\infty} e^x = \underline{\hspace{1cm}}$$

4
$$\lim_{x \to -\infty} 3^x =$$

6
$$\lim_{x\to\infty} \frac{10}{1+e^{-x}} = \underline{\hspace{1cm}}$$

6
$$\lim_{x\to -\infty} \frac{10}{1+e^{-x}} = \underline{\hspace{1cm}}$$