MTHSC 102 SECTION 3.2-3 – SIMPLE RATE OF CHANGE FORMULAS

Kevin James

Rule Name	Function	Derivative
Constant Rule	y = b	$\frac{dy}{dx} = 0$

Rule Name	Function	Derivative
Constant Rule	y = b	$\frac{dy}{dx} = 0$
Linear Function Rule	y = ax + b	$\frac{dy}{dx} = a$

Rule Name	Function	Derivative
Constant Rule	y = b	$\frac{dy}{dx} = 0$
Linear Function Rule	y = ax + b	$\frac{dy}{dx} = a$
Power Rule	$y = x^n$	$\frac{dy}{dx} = nx^{n-1}$

Rule Name	Function	Derivative
Constant Rule	y = b	$\frac{dy}{dx} = 0$
Linear Function Rule	y = ax + b	$\frac{dy}{dx} = a$
Power Rule	$y = x^n$	$\frac{dy}{dx} = nx^{n-1}$
Constant Multiple Rule	y = kf(x)	$\frac{\mathrm{d}y}{\mathrm{d}x} = kf'(x)$

Rule Name	Function	Derivative
Constant Rule	y = b	$\frac{dy}{dx} = 0$
Linear Function Rule	y = ax + b	$\frac{dy}{dx} = a$
Power Rule	$y = x^n$	$\frac{dy}{dx} = nx^{n-1}$
Constant Multiple Rule	y = kf(x)	$\frac{\mathrm{dy}}{\mathrm{dx}} = kf'(x)$
Sum Rule	y = f(x) + g(x)	$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x) + g'(x)$

Rule Name	Function	Derivative
Constant Rule	y = b	$\frac{dy}{dx} = 0$
Linear Function Rule	y = ax + b	$\frac{dy}{dx} = a$
Power Rule	$y = x^n$	$\frac{\mathrm{dy}}{\mathrm{dx}} = nx^{n-1}$
Constant Multiple Rule	y = kf(x)	$\frac{\mathrm{d}y}{\mathrm{d}x} = kf'(x)$
Sum Rule	y = f(x) + g(x)	$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x) + g'(x)$
Difference Rule	y = f(x) - g(x)	$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x) - g'(x)$

Rule Name	Function	Derivative
Constant Rule	y = b	$\frac{dy}{dx} = 0$
Linear Function Rule	y = ax + b	$\frac{dy}{dx} = a$
Power Rule	$y = x^n$	$\frac{\mathrm{dy}}{\mathrm{dx}} = nx^{n-1}$
Constant Multiple Rule	y = kf(x)	$\frac{\mathrm{d}y}{\mathrm{d}x} = kf'(x)$
Sum Rule	y = f(x) + g(x)	$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x) + g'(x)$
Difference Rule	y = f(x) - g(x)	$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x) - g'(x)$
Exponential Rule	$y=b^{x}\ (b>0)$	$\frac{\mathrm{dy}}{\mathrm{dx}} = (\ln b)b^{x}$

y = b	$\frac{dy}{dx} = 0$
y = ax + b	$\frac{dy}{dx} = a$
$y = x^n$	$\frac{\mathrm{dy}}{\mathrm{dx}} = nx^{n-1}$
y = kf(x)	$\frac{\mathrm{d}y}{\mathrm{d}x} = kf'(x)$
y = f(x) + g(x)	$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x) + g'(x)$
y = f(x) - g(x)	$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x) - g'(x)$
$y=b^{x} (b>0)$	$\frac{dy}{dx} = (\ln b)b^x$
$y=e^{x}$	$\frac{dy}{dx} = e^x$
	$y = ax + b$ $y = x^{n}$ $y = kf(x)$ $y = f(x) + g(x)$ $y = f(x) - g(x)$ $y = b^{x} (b > 0)$

Rule Name	Function	Derivative
Constant Rule	y = b	$\frac{dy}{dx} = 0$
Linear Function Rule	y = ax + b	$\frac{dy}{dx} = a$
Power Rule	$y = x^n$	$\frac{\mathrm{dy}}{\mathrm{dx}} = nx^{n-1}$
Constant Multiple Rule	y = kf(x)	$\frac{dy}{dx} = kf'(x)$
Sum Rule	y = f(x) + g(x)	$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x) + g'(x)$
Difference Rule	y = f(x) - g(x)	$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x) - g'(x)$
Exponential Rule	$y=b^{\times}\ (b>0)$	$\frac{dy}{dx} = (\ln b)b^x$
e^{x} Rule	$y=e^{x}$	$\frac{dy}{dx} = e^x$
Natural Log Rule	$y = \ln(x), \ (x > 0)$	$\frac{dy}{dx} = \frac{1}{x}$

EXAMPLE

Suppose that $f(x) = 3x^3 - 4x^2 + 3x + 5e^x - 8\ln(x)$. Give a formula for f'(x).