§3.14:

Recall: If \(x \) changes from \(x_1 \) to \(x_2 \) and if \(y = f(x) \) then we write

\[
\Delta x = x_2 - x_1, \quad (\text{the change in } x)
\]

\[
\Delta y = f(x_2) - f(x_1), \quad (\text{the change in } y)
\]

\[
\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \quad (\text{the average rate of change of } y \text{ w.r.t. } x \text{ in the interval } [x_1, x_2])
\]

\[
\frac{dy}{dx} = \lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1} \quad (\text{the instantaneous rate of change in } y \text{ w.r.t. } x \text{ when } x = x_1)
\]

Homework: Interview at least two people who are employed in your major field of study and write a paragraph on why you need to know calculus for that field.
Suppose that a rod is made of a non homogeneous mixture of materials and that the mass of the rod between its left end pt. and the pt. x meters to the right is given by

$$f(x) = \sqrt{x} \text{ kg}.$$

Mass between x_1 & x_2 is:

$$dm = f(x_2) - f(x_1)$$

Linear density at x_1 is:

$$\rho = \lim_{x_2 \to x_1} \left(\frac{f(x_2) - f(x_1)}{x_2 - x_1} \right)$$

$$= \frac{dm}{dx} \text{ or } f'(x) \text{ kg/m}$$

Eg. The linear density of the rod at $x=1.1$ is

$$f'(1.1) = \frac{1}{2 \sqrt{1.1}} \approx 0.4767 \text{ kg/m}$$
In a chemical reaction such as

$$2 \text{H}_2 + \text{O}_2 \rightarrow 2 \text{H}_2\text{O}$$

we have two reactants reacting to form a product.

$$\frac{A + B}{\text{reactants}} = \frac{C}{\text{product}}$$

We will denote the concentration in moles/liter of the reactants and product above at time t as $A(t)$, $B(t)$, $C(t)$.

- Avg. rate of reaction $= \frac{AC}{dt} = \frac{C(t_2) - C(t_1)}{t_2 - t_1}$
- Instantaneous rate of reaction $= \frac{dC}{dt} = \lim_{t_2 \rightarrow t_1} \left[\frac{dC}{dt} - C(t_1) \right]$

It turns out that A & B decrease at the same rate as C increases. That is,

$$\frac{dA}{dt} = -\frac{dB}{dt} = -\frac{dC}{dt}$$
The flow is fastest at the center of the vessel and slows as we move toward the vessel wall.

Let \(v \) denote the velocity of the flow. Then \(v \) decreases as \(r \) increases until \(v = 0 \) when \(r = R \).

- **Law of Laminar flow**
 \[
 v = \frac{p}{4 \pi \eta \ell} (R^2 - r^2)
 \]

\(p \) = diff of press on both ends
\(\eta \) = blood viscosity.

Note: If \(p \) and \(\ell \) are fixed then \(v \) is a function of \(r \) w/ domain \([0, R]\).

avg. rate of change = \[
\frac{dv}{dr} = \frac{v(R) - v(r)}{R - r}
\]

velocity gradient = \[
\lim_{r \to R} \frac{v(R) - v(r)}{R - r} = v'(r)
\]

For small human arteries \(R = 0.008 \, \text{cm} \)

\(\eta = 0.02 \)
\(\ell = 2 \, \text{cm} \)
How fast is the blood flowing when \(r = 0.002 \), \(r = 0.004 \)?

\[v(0.002) = \]

\[v(0.004) = \]

What is the velocity gradient when \(t = 0.004 \)?

\[\frac{dv}{dt} = ? \]
Torriceili's Law

5000-gal tank
Water drains completely in 40 min.

\[V(t) = 5000 \left(1 - \frac{t}{40}\right)^2 \text{ gal/min} \]
for \(t \in [0, 40] \)

\[\text{velocity of water flow} \]

1. How fast is the water flowing at \(t = 5, 10, 20, 30 \) min?

\[V(5) = \]

\[V(10) = \]

\[V(20) = \]

\[V(30) = \]

2. When is it flowing fastest?

3. What is the instantaneous rate of change of the flow at time \(t \)?

\[V(t) = 5000 \left(1 - \frac{t}{40} + \frac{t^2}{1600}\right) \]

\[= 5000 - 250t + \frac{25}{8} t^2 \]

\[V'(t) = \]