MAT 106
Quiz #10
30 September 2004

Name:
You may not use your notes. Please show all of your work. An answer without justification will receive little credit.

(1) Identify the absolute extrema of the function \(f(x) = x^3 - 9x^2 + 15x + 2 \) on the interval \([0, 6]\).

First we compute the derivative of \(f(x) \).

\[f'(x) = 3x^2 - 18x + 15 = 3(x - 1)(x - 5). \]

Since \(f \) and \(f' \) are defined on all points in \([0, 6]\) and since the zeros of \(f'(x) \) are 1 and 5, the critical numbers of \(f(x) \) are 1 and 5. Now we must evaluate \(f \) at 0, 1, 5 and 6.

\[
\begin{align*}
 f(0) &= 2, \\
 f(1) &= 9, \\
 f(5) &= -23 \quad \text{and} \\
 f(6) &= -16.
\end{align*}
\]

Since all local extrema must be attained at the critical numbers and since we have also evaluated \(f \) at the endpoints of \([0, 6]\), we can see that the absolute maximum value of \(f \) on \([0, 6]\) is 9 and this value is attained at \(x = 1 \). Also, we can see that the absolute minimum value of \(f \) on \([0, 6]\) is -23 and this value is attained at \(x = 5 \).

(2) Prove that \(g(x) = x^5 + 7x^3 + 2x + 7 \) has exactly one real root.

First, we note that \(g \) is continuous and differentiable everywhere because \(g \) is a polynomial. Next, we note that \(g(-1) = -3 \) and that \(g(0) = 7 \). Since \(-3 = g(-1) < 0 < g(0) = 7\), the Intermediate Value Theorem, states that there exists a number \(c \) with \(-1 < c < 0\) such that \(g(c) = 0 \). Thus \(g \) has at least one root.

Now, suppose there were two roots, say at \(d \) and \(e \) where \(d < e \) (one of these may be the same as \(c \) above). Since \(g \) is a polynomial, we have

a.) \(g \) is continuous on \([d, e]\),

b.) \(g \) is differentiable on \((d, e)\) and

c.) \(g(d) = 0 = g(e) \).

Thus Rolle’s theorem states that there is a number \(b \in (d, e) \) such that \(g'(b) = 0 \). That is, we have proved that if \(g \) has two roots, then there must be a number \(b \) such that \(g'(b) = 0 \). However, \(g'(x) = 5x^4 + 21x^2 + 2 \) which is always greater than 0. Thus \(g \) cannot have a second root.