Question 12: Let \(f(x) = \frac{2x^2 - z}{x^2 - 4} \).

a) What is the domain of \(f(x) \)?
\[-\infty, -2, -2, 2, 2, \infty\]

b) What are the \(x \) - and \(y \) - intercepts?
\(x \)-intercepts: \(x = \pm 1 \)
y-intercept: \(y = \frac{1}{2} \)

c) Is \(f \) even, odd, or neither?
Even

d) What are the vertical asymptotes of \(f(x) \)?
Justify your answer using one-sided limits.
\[x = \pm 2 \] \(\lim_{x \to 2^-} f(x) = -\infty \] \(\lim_{x \to 2^+} f(x) = \infty \]
\[x = \pm 2 \] \(\lim_{x \to 2^-} f(x) = -\infty \] \(\lim_{x \to 2^+} f(x) = \infty \]

e) Identify the critical points and intervals of increase/decrease for \(f(x) \). Also indicate any local extremes.
Critical points: \(x = 0 \)
\(f \) is undefined at \(x = \pm 2 \) but so is \(f \) at \(x = 0 \) at \(x = 0 \).

f) Identify intervals of concavity and inflection points.
Inflection points: \((2, 2), (2, 2) \)

\(f'' \) is undefined at \(x = 0 \) as is \(f' \).
\(f'' \) is never 0.

\(f'' \) changes from concave down to concave up at \(x = 0 \).

\(f'' \) has no points of inflection.

\(f'' \) is undefined at \(x = 0 \).

\(f'' \) is undefined at \(x = \pm 2 \).

\(f'' \) is undefined at \(x = 0 \).

\(f'' \) is undefined at \(x = \pm 2 \).

\(f'' \) is undefined at \(x = 0 \).

Thus, \(y = 2 \) is the only horizontal asymptote.

h) Sketch the graph of \(y = f(x) \).