Definitions: Suppose that \(A \) and \(B \) are sets.

Then we define the union \(\cup \) of \(A \) and \(B \) and the intersection \(\cap \)

\[A \cup B = \{ x : x \in A \text{ or } x \in B \} \]

\[A \cap B = \{ x : x \in A \text{ and } x \in B \} \]

Examples:

\[A = \{ a, b, c, d \} \]

\[B = \{ c, d, e, f \} \]

\[A \cup B = \{ a, b, c, d, e, f \} \]

\[A \cap B = \{ c, d \} \]

Theorem 11.3:

1. \(A \cup B = B \cup A \); \(A \cap B = B \cap A \).
2. \((A \cup B) \cap C = A \cup (B \cap C) \); \((A \cap B) \cap C = A \cap (B \cap C) \).
3. \(A \cup \emptyset = A \); \(A \cap \emptyset = \emptyset \).
4. \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \); \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \).
Proof:
We will show that
\[A \cup (B \cap C) = (A \cup B) \cap (A \cup C). \]
(Note: We will use Thm 6.2 \(x \cup (y \cap z) = (x \cup y) \cap (x \cup z) \).

\(\leq \): Let \(x \in A \cup (B \cap C) \)

Then

Thus, \(x \in (A \cup B) \cap (A \cup C) \) and therefore
\[A \cup (B \cap C) \leq (A \cup B) \cap (A \cup C). \]

\(\geq \): Let \(x \in (A \cup B) \cap (A \cup C) \).

Then

So, \(x \in A \cup (B \cap C) \) and therefore
\[(A \cup B) \cap (A \cup C) \leq A \cup (B \cap C). \]

Thus,
\[A \cup (B \cap C) = (A \cup B) \cap (A \cup C). \]
Alternative Method:

\[A \lor (B \land C) = \exists x : x \in A \lor \exists x : x \in B \land C \]

\[= \exists \]

Venn Diagrams:

Diagrams that are useful in visualizing which things are true. However, a Venn Diagram is **NOT** a proof.
Prop. 11.4:

\[|A| + |B| = |A \cup B| + |A \cap B| \]

Cor: \[|A \cup B| = |A| + |B| - |A \cap B| \]

Proof (of Prop. 11.4):

We will give a combinatorial proof that \[|A| + |B| = |A \cup B| + |A \cap B| \].

First, label each element of A with an "A".

Label each element of B with a "B".

How many labels were used?

Thus, \[|A| + |B| = \# \text{labels} = |A \cup B| + |A \cap B| \]
Proof Template 9:

To prove an equation of the form:

\[\text{LHS} = \text{RHS} \]

1. Pose a counting question: "In how many ways...?"

2. Argue that LHS is the answer.

3. On the other hand, argue that RHS is the right answer.

4. Conclude that

\[\text{LHS} = \text{Answer} = \text{RHS} \]

Note: Finding the right question is the difficult part.

To get started, ask yourself what is the LHS (or RHS) counting.

Example: How many integers 1 ≤ x ≤ 1000 are divisible by 2 or 5?
Definition 11.6:

1. Let A and B be sets. We say that A and B are **disjoint** provided that $A \cap B = \emptyset$.

2. Let A_1, \ldots, A_n be a collection of sets. This collection is said to be **pairwise disjoint** provided that whenever $i \neq j$, $A_i \cap A_j = \emptyset$.

Example:

$A = \{1, 2, 3\}$

$B = \{4, 5, 6\}$

$C = \{7, 8, 9\}$

$A \cap B = \emptyset$

$A \cap C = \emptyset$

$B \cap C = \emptyset$

Corollary 11.8: Let A and B be sets. If A and B are disjoint then $|A \cup B| = |A| + |B|$.

Proof:
Corollary: Suppose that A_1, \ldots, A_n is a pairwise disjoint collection of sets. Then
\[
\left| \bigcup_{i=1}^{n} A_i \right| = |A_1 \cup A_2 \cup \cdots \cup A_n| = \sum_{i=1}^{n} |A_i|.
\]

Definition: Let A and B be sets. Then we define their difference $A - B$ and their symmetric difference $A \Delta B$ by
\[
A - B = \{ x \in A : x \not\in B \},
\]
\[
A \Delta B = (A - B) \cup (B - A).
\]

Example:
\[
A = \{1, 2, 3, 4, 5\},
\]
\[
B = \{1, 4, 7, 9\},
\]
\[
A - B = \{2, 3\},
\]
\[
B - A = \{7, 9\},
\]
\[
A \Delta B = \{2, 3, 7, 9\}.
\]
Let's draw a picture of symmetric difference:

\[A \Delta B = (A \cap B) \cup (B \cup A) \]

Proposition: Let \(A \) and \(B \) be sets. Then

\[A \Delta B = (A \cup B) - (A \cap B) \]

Proof: First, we will show that \(A \Delta B \subseteq (A \cup B) - (A \cap B) \).

Let \(x \in A \Delta B \), then \(x \in (A \not\subseteq B) \cup (B \not\subseteq A) \).

Case 1: Suppose \(x \in A - B \). Then,

Case 2: Suppose \(x \in B - A \). Then,
Since in either case,
\[x \in (A \cup B) - (A \cap B), \]
\[A \Delta B = (A \cup B) - (A \cap B). \]

(2): Now, we will show that
\[(A \cup B) - (A \cap B) \subseteq A \Delta B. \]
Let \(x \in (A \cup B) - (A \cap B) \).
So again there are two cases: \(x \in A \) or \(x \in B \).

Case 1: Suppose that \(x \in A \),

Case 2: Suppose that \(x \in B \),

so in either case \(x \in (A - B) \cup (B - A) = A \Delta B \).
Thus,
\[A \Delta B \subseteq (A - B) \cup (B - A). \]
So, we have shown that
\[A \Delta B = (A \cup B) - (A \cap B). \]
Definition:

Let A and B be sets. Then the Cartesian product of A and B is defined as

$$A \times B = \{(a,b) : a \in A; b \in B\}$$

Example:

$A = \{1, 2, 3\}$, $B = \{x, y\}$

$A \times B = \{\}$

$B \times A = \{\}$

Proposition 15:

Let A and B be finite sets. Then, $|A \times B| = |A| \cdot |B|$.

Proof: