(1) Give a definition of what it means for an integer to be a square. For example 1, 4, 9, 16, 25 are squares.

Definition: An integer \(x \) is a square provided there is another integer \(y \) such that \(x = y \times y \).

(2) Prove the following statement. If \(x \) is an even integer then \(x + 1 \) is odd.

Suppose that \(x \in \mathbb{Z} \) is even. Then there is \(c \in \mathbb{Z} \) such that \(x = 2c \).

\[
\Rightarrow x + 1 = 2c + 1
\]

Thus \(x + 1 \) is odd.