MAT 119
Quiz #6
October 11, 2005

Name: Key

You may not use your notes. Please show all of your work. An answer without justification will receive little credit.

(1) Suppose that \(R \) is a relation on a set \(A \). Prove that if \(R \) is symmetric then \(R = R^{-1} \).

(Note: It is actually true that \(R \) is symmetric if and only if \(R = R^{-1} \).)

Suppose that \(R \) is a symmetric relation on the set \(A \).

(i): Let \((x, y) \in R\) then \((y, x) \in R \) also.
Thus \((x, y) \in R^{-1} \). Therefore, \(R \subseteq R^{-1} \).

(ii): Let \((x, y) \in R^{-1} \). Then \((y, x) \in R \).
Since \(R \) is sym, \((x, y) \in R \) also.
Thus \(R^{-1} \subseteq R \).

Therefore \(R = R^{-1} \).

(2) Consider the equivalence relation

\[R = \{ (1, 1), (2, 2), (3, 3), (4, 4), (3, 4), (4, 3), (2, 3), (3, 2), (2, 4), (4, 2) \} \]

on the set \(S = \{ 1, 2, 3, 4 \} \). Compute each of the following equivalence classes of \(R \):

\[[1] = \{ 1 \} \]
\[[2] = \{ 2, 3, 4 \} \]
\[[3] = \{ 2, 4 \} \]
\[[4] = \{ 2, 3, 4 \} \]