MAT 129 Lab #4 February 26, 2007

- (1) Write each of the following sentences using the quantifiers \forall and \exists . Write their negation.
 - a.) There is an integer whose square is 2.
 - b.) Some integer is divisible by 7.
 - c.) Every integer is a perfect cube.
 - d.) All integers are divisible by 37.
 - e.) There is an integer that when multiplied by any integer gives a result of 0.
 - f.) Everybody loves somebody sometime.
- (2) Let $A = \{a, b, c\}$.
 - a.) Write down the power set 2^A of A.
 - b.) How large is the power set of 2^A ? That is, compute $|2^{2^A}|$.
 - c.) Write down 3 elements of 2^{2^A} .
- (3) There are actually some restrictions that we did not discuss on what sorts of collections of objects should be considered as sets. For instance let M be the collection of all sets which do not contain themselves as elements. Now if M is a set we can ask whether $M \in M$ or not. What do you think?
- (4) Let $C = \{x \in \mathbb{Z} : x | c\}$ and let $D = \{x \in \mathbb{Z} : x | d\}$. Find a necessary and sufficient condition for $C \subset D$. (That is, find some statement P about c and d such that P is true if and only if $C \subset D$). Give a proof that your condition is correct.
- (5) Suppose that N > 1 is an integer. Prove that the following integers are composite: $N!+2, N!+3, N!+4, \ldots, N!+N$. Use this observation to prove that the gaps between consecutive primes can be arbitrarily large.
- (6) In this problem, we want to consider the decimal expansions of rational numbers.
 - a.) Argue that the decimal expansion of any rational number must either be finite or must eventually become periodic.
 - b.) Can you write the number 12.1347898989 as a fraction?
 - c.) Argue that any number whose decimal expansion is either finite or is periodic is rational.
 - d.) What can you say about the decimal expansion of $\sqrt{2}$?
- (7) Suppose that A, B, C and D are sets. Show that

$$(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D).$$