MAT 129
Lab #6
February 26, 2007

How to prove properties of a relation:
Let R be a relation on a set S. To show that R. is reflexive, we must show that zRx for all
xes.
Since the statement “xRx for all v € S contains the universal quantifier “all”, to prove this
statement we must choose an arbitrary x € S and show that xRx.
Start out: Let x € S. Then show: xRz. Since you're trying to show xRz, it is helpful
to write out what Rz would mean (for example, in 1. below Rz means x? > 0) and see if
you recognize this as being a true statement.
To show that R is symmetric, we must show that if =,y € S and xRy, then yRzx.
Since the statement “if x,y € S and xRy, then yRx” is a conditional statement, to prove
this statement, we should first try to prove this by the direct method.
Start out: Assume z,y € S and zRy. Then, show: yRx.
Write out what 2Ry means (for example, in 1. xRy means xy > 0). Since you're trying
to show yRx, write out what yRx would mean (in 1., yx > 0) and try to see how this is a
consequence of xRy.
To show that R is transitive, we must show that if z,y, 2 € S and xRy and yRz, then xRz.
Since the statement “if x,y,z € S and xRy and yRz, then xRz” is a conditional statement,
to prove this statement, we should first try to prove this by the direct method.
Start out: Assume z,y,z € S and xRy and yRz. Then, show zRz.
Write out what xRy and yRz mean (in 1., xRy and yRz mean zy > 0 and yz > 0). Since
you're trying to show xRz, write out what 2Rz would mean (in 1., xz > 0) and try to see
how this is a consequence of xRy and yRz.
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For 1-7 below, do each of the following parts a-d.

a.) Prove or disprove: R is reflexive.
b.) Prove or disprove: R is symmetric.
Prove or disprove: R is transitive.
For 1-5 and 7: if R is an equivalence relation, describe the equivalence classes of R.

)
c.)
d.)
1.) Define R on Z by xRy if and only if zy > 0.
2.) Define R on Q by zRy if and only if x — y € Z.
3.) Define R on Z by zRy if and only if x = 3y.
4.) Define R on Z x Z by (a,b)R(c,d) if and only if a > c.
5.) Define R on Z by xRy if and only if x —y is a multiple of 9. Have you seen a relation
like this one before?
6.) Let S be the set of all sets. Fix a set C'in S. We'll use the set C' to define a relation
on S in the following way: Define R on S by ARB if and only if ANC' = BN C (So
given two sets A and B, A is related to B if and only if ANC = BN (C).
7.) Define a relation R on Z x (Z — 0) by (a,b)R(c,d) if and only if ad = be.
Challenge problem (1pt bonus): Think about why you might want to consider such
pairs (a,b) in 7. as being equivalent. It might be helpful to think about (a,b) as defining a

rational number 7



