$\begin{array}{c} \textbf{MAT 129} \\ \textbf{Quiz } \#2 \\ \textbf{February 11, 2005} \end{array}$

Name

You may not use your notes. Please show all of your work. An answer without justification will receive little credit.

(1) Compute

$$\prod_{k=2}^{4} k^2 - 1.$$

$$\prod_{k=2}^{4} k^2 - 1 = (2^2 - 1)(3^2 - 1)(4^2 - 1) = 3 \cdot 8 \cdot 15 = 360.$$

(2) Let $C = \{x \in \mathbb{Z} : x | 15\}$ and let $D = \{x \in \mathbb{Z} : x | 30\}$. Show that $C \subset D$.

Two Approaches

- a.) $C = \{-15, -5, -3, -1, 1, 3, 5, 15\}$ and $D = \{-30, -15, -10, -6, -5, -3, -2, -1, 1, 2, 3, 5, 6, 10, 15, 30\}$. Now note that each element of C is also in D. Thus $C \subset C$.
- b.) Let $c \in C$. Then c|15. So, there exists $k \in \mathbb{Z}$ such that 15 = kc. This implies that 30 = 2kc = c(2k). Let $\ell = 2k$. Then $\ell \in \mathbb{Z}$ and $c\ell = 30$. So, c|30. Therefore $c \in D$. Since $c \in C$ was arbitrary, it follows that $C \subset D$.