MAT 129 Quiz #3 23 February 2005

Name:

You may not use your notes. Please show all of your work. An answer without justification will receive little credit.

(1) Consider the relation R defined on $2^{\mathbb{Z}}$ by $R = \{(A, B) : A, B \subseteq \mathbb{Z}; |A| = |B|\}$. Prove that R is reflexive.

Let $A \in 2^{\mathbb{Z}}$. Then |A| = |A|. Thus, $(A, A) \in R$. So, R is reflexive.

(2) Consider the relation R defined on $2^{\mathbb{Z}}$ by $R = \{(A, B) : A, B \subseteq \mathbb{Z}; |A| = |B|\}$. Indicate whether R has each of the following properties and if not give the reason that it does not:

Reflexive: Yes.

Irreflexive: No. For example, $(\{1,2\},\{1,2\}) \in \mathbb{R}$.

Symmetric: Yes.

Antisymmetric: No. For example, $(\{3,4\},\{1,2\})$ and $(\{1,2\},\{3,4\}) \in \mathbb{R}$, but $\{3,4\} \neq \{1,2\}$.

Transitive: Yes.