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Three dimensional coordinate system

Goal

We wish to generalize the familiar xy -plane to three dimensions in
order to model the three dimensional space we live in. In order to
do this we need to introduce some new ideas.

• We use the traditional x- and y -axes and add a third z-axis
which is perpendicular to the xy -plane.

• The positive direction along the z-axis will be determined by
the so called right-hand rule.

• To each point P in space we associate a 3-tuple (a, b, c).

• To arrive at the point P, we travel a units along the x-axis, b
units in the direction parallel to the y -axis and c units in the
direction parallel to the z-axis.
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Note

There three planes determined by any two of the 3 axes are called
the xy -plane, the xz-plane and the yz-plane.

Exercise

What solution spaces are determined by the following?

• z = 1.

• x = y .

• x = y = z .

• x = 2, y = 1, z = 3.
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Definition (Distance Formula)

The distance |P1P2| between two points P1(x1, y1, z1) and
P2(x2, y2, z2) is given by

|P1P2| =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

Note

This formula follows from the Pythagorean theorem.

Exercise

Find the distance between (2, 1, 3) and (1,−1, 5).
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Exercise

Give an equation whose solution set is the points on the surface of
the sphere centered at the point (h, k , l) and whose radius is r .

Exercise

What region of R3 is determined by the following inequalities.

1 ≤ x2 + y2 + z2 ≤ 4, z ≤ 0

.
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