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GEOMETRIC DESCRIPTION OF VECTORS

DEFINITION

® A vector v € R3 is a pair of points v = AB. The point A is
said to be the initial point and the point B the terminal point.
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GEOMETRIC DESCRIPTION OF VECTORS

DEFINITION

® A vector v € R3 is a pair of points v = AB. The point A is
said to be the initial point and the point B the terminal point.

© The magnitude of v = AB is defined to be |AB|.
® Two vectors are considered equal if they have the same

direction (i.e. they lie on parallel lines and have the same
orientation) and the same magnitude.
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GEOMETRIC DESCRIPTION OF VECTORS

DEFINITION

® A vector v € R3 is a pair of points v = AB. The point A is
said to be the initial point and the point B the terminal point.

© The magnitude of v = AB is defined to be |AB|.
® Two vectors are considered equal if they have the same

direction (i.e. they lie on parallel lines and have the same
orientation) and the same magnitude.

@ The zero vector denoted by 0 is the vector whose initial and
terminal points are the same. This vector has magnitude 0
and has no associated direction.
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DEFINITION (ADDITION)

If u and v are vectors positioned so that the initial point of v is at
the terminal point of u, then u + v is the vector with initial point
the same as the initial point of u and terminal point the same as
the terminal point of v.
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DEFINITION (ADDITION)

If u and v are vectors positioned so that the initial point of v is at
the terminal point of u, then u + v is the vector with initial point
the same as the initial point of u and terminal point the same as
the terminal point of v.

The parallelogram law assures us that v+ v = v + u.
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DEFINITION (SCALAR MULTIPLICATION)

If c € R and v € R3 then the scalar multiple cv of v by c is the
vector whose length is |c| times the length of v and whose
direction is the same as v if ¢ > 0 and is opposite of the direction
of vifc<O0. If c=0o0r v=0then cv=0.
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DEFINITION (SCALAR MULTIPLICATION)

If c € R and v € R3 then the scalar multiple cv of v by c is the
vector whose length is |c| times the length of v and whose
direction is the same as v if ¢ > 0 and is opposite of the direction
of vifc<O0. If c=0o0r v=0then cv=0.

| \

NOTE
@ We define the negative of v as (—1)v

® We define the difference of two vectors as u — v = u+ (—1)v.

y
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ALGEBRAIC DESCRIPTION OF VECTORS

CONVENTION

© Given a vector a = AB, we can associate to it the pair (a1, a2)
if we are in 2 dimensions or the 3-tuple (a1, a2, a3) if we are in
3 dimensions where one can move from the initial point A to
the terminal point B by moving a; units in the x direction, a»
units in the y direction (and a3z units in the z direction).
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ALGEBRAIC DESCRIPTION OF VECTORS

CONVENTION

© Given a vector a = AB, we can associate to it the pair (a1, a2)
if we are in 2 dimensions or the 3-tuple (a1, ap, a3) if we are in
3 dimensions where one can move from the initial point A to
the terminal point B by moving a; units in the x direction, a»
units in the y direction (and a3z units in the z direction).

® The pair or 3-tuple above is called an algebraic vector.
® This completely characterizes the vector v.

@ So, we typically think of vectors as having their initial point at
the origin and their terminal point at (a1, a2, a3).
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ALGEBRAIC DESCRIPTION OF VECTORS

CONVENTION

© Given a vector a = AB, we can associate to it the pair (a1, a2)
if we are in 2 dimensions or the 3-tuple (a1, ap, a3) if we are in
3 dimensions where one can move from the initial point A to
the terminal point B by moving a; units in the x direction, a»
units in the y direction (and a3z units in the z direction).

® The pair or 3-tuple above is called an algebraic vector.

® This completely characterizes the vector v.

@ So, we typically think of vectors as having their initial point at
the origin and their terminal point at (a1, a2, a3).

® We say that any geometric vector v = AB with associated
algebraic vector a = (a1, ap, a3) is a representation of a.
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Given the points A = (x1,y1,21) and B = (x2, y2, z2), the algebraic
vector a with geometric representation AB is

a=(x—x1,Y2 —y1,2 — z1).
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Given the points A = (x1, y1,21) and B = (xz, y»2, z2), the algebraic
vector a with geometric representation AB is

a= (X2 — X1,Y2 = Y1,22 — 21)-

| 5\

Fact
The magnitude or length of an algebraic vector a (or of any of its
geometric representations) is given by

a \/ a2 + a3 in 2 dimensions,
al =
\/a3 + a5+ a3 in 3 dimensions.

A\
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Fact

If a= (a1,a2,a3) and b = (b1, by, b3) and c € R, then

at+tb = (31+b1,82+b2,a3+b3),
a—b = (ai— bi,ax— by,a3 — b3) and

ca = (cai,cap,cas).
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Fact

If a= (a1,a2,a3) and b = (b1, by, b3) and c € R, then

at+tb = (31+b1,82+b2,a3+b3),
a—b = (ai— bi,ax— by,a3 — b3) and

ca = (cai,cap,cas).

Suppose that a = (1,2,—-1) and b =(—1,3,2). Find |a
and 2a + 3b.

,a+b
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PROPERTIES OF VECTORS

If a, b and c are vectors d, e € R, then,
®at+b=b+a
®(a+b)+c=a+(b+c).
® a+0=a.
®a+(—a)=0.
® d(a+ b) = da+ db.

@ (e+d)a=ea+ da.
@ (ed)a = e(da).
0 (1)a=a
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3 SPECIAL VECTORS

The standard basis vectors are

i=(1,0,0), j=(0,1,0) and k=(0,0,1).
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3 SPECIAL VECTORS

The standard basis vectors are

i=(1,0,0), j=(0,1,0) and k=(0,0,1).

(317‘327 33) - ali aF 32/ + a3k.

Kevin James MTHSC 206 Section 12.2 —Vectors



3 SPECIAL VECTORS

The standard basis vectors are

i=(1,0,0), j=(0,1,0) and k=(0,0,1).

(317327 33) - ali aF 32/ + a3k.

Suppose that a =2i — 3j + k and b= i — j + 3k. Express the
vector 2a + b in terms of 7, and k.
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A unit vector is a vector whose length is 1.
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A unit vector is a vector whose length is 1.

i,j and k are unit vectors.
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A unit vector is a vector whose length is 1.

i,j and k are unit vectors.

NORMALIZATION

If 0 # a € R3, then the unit vector which points in the same
direction as a is given by ﬁa.
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Suppose that a 100-Ib weight hangs from two wires which are at
60° and 30° to the flat ceiling. Find the tension forces T; and T
in both wires and their magnitudes. (Hint: Treat all forces as
vectors in R? expressed in terms of i and j.)
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