MTHSC 206 Section 12.3 –Dot Products and Projections

Kevin James

Kevin James MTHSC 206 Section 12.3 –Dot Products and Projections

伺 ト イヨト イヨト

DEFINITION

Suppose that $a = (a_1, a_2, a_3)$ and $b = (b_1, b_2, b_3)$. Then we define the dot product $a \cdot b$ of a and b by

$$a \cdot b = a_1 b_1 + a_2 b_2 + a_3 b_3.$$

EXAMPLE

$$(1, 2, -1) \cdot (2, 3, -2) = (1)(2) + (2)(3) + (-1)(-2) = 2 + 6 + 2 = 10$$

(4回) (4回) (4回)

PROPERTIES OF THE DOT PRODUCT

Suppose that $a, b, c \in \mathbb{R}^3$ and $d \in \mathbb{R}$.

a · a = |a|².
 a · b = b · a.
 a · (b + c) = a · b + a · c.
 (da) · b = d(a · b) = a · (db).
 0 · a = 0.

The Geometry of Dot Products

Theorem

Suppose that a and b are vectors in \mathbb{R}^2 or \mathbb{R}^3 . Then,

 $a \cdot b = |a||b|\cos(\theta),$

where θ is the angle between a and b.

COROLLARY

Suppose that a, b and θ are as above. Then

$$\cos(heta) = rac{a \cdot b}{|a||b|}.$$

EXAMPLE

The angle between (1, 1, 1) and (1, 1, 0) is $\theta = \arccos(\frac{2}{\sqrt{6}})$.

Fact

Two vectors are perpendicular or orthogonal if and only if $a \cdot b = 0$.

EXAMPLE

i, j and k are pairwise orthogonal.

DIRECTION ANGLES

Suppose that $a \in \mathbb{R}^3$ and that α, β and γ are the angles between a and the x-, y- and z-axes (respectively). Then,

$$\cos(\alpha) = \frac{a_1}{|a|}, \quad \cos(\beta) = \frac{a_2}{|a|} \quad \text{and} \quad \cos(\gamma) = \frac{a_3}{|a|}.$$

(4月) (4日) (4日)

Note

Suppose that $a\in\mathbb{R}^3$ is a vector and that α,β and γ are its position angles. Then,

1
$$\cos(\alpha)^2 + \cos(\beta)^2 + \cos(\gamma)^2 = 1.$$

$$a = (|a|\cos(\alpha), |a|\cos(\beta), |a|\cos(\gamma)) = |a|(\cos(\alpha), \cos(\beta), \cos(\gamma)).$$

3
$$\frac{1}{|a|}a = (\cos(\alpha), \cos(\beta), \cos(\gamma)).$$

((日)) (日) (日)

æ

DEFINITION

Suppose that $a = \vec{PQ}$ and $b = \vec{PR}$ ($Q \neq R$). Let \mathcal{L} be a line which is perpendicular to the line containing a and passes through R. Let S be the intersection point of \mathcal{L} with the line containing a. Then the vector \vec{PS} is the vector projection of b onto a and is denoted by $\text{Proj}_a(b)$.

Definition

The scalar projection of b onto a (or component of b along a) is defined to be the signed magnitude of $\operatorname{Proj}_{a}(b)$ and is denoted by $\operatorname{comp}_{a}(b)$.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Note

Suppose that a and b are vectors and that θ is the angle between them.

1
$$\operatorname{comp}_{a}(b) = |b| \cos(\theta).$$

2 $a \cdot b = |a||b| \cos(\theta).$
3 $\operatorname{comp}_{a}(b) = \frac{a \cdot b}{|a|}.$
4 $\operatorname{Proj}_{a}(b) = \operatorname{comp}_{a}(b) \frac{a}{|a|} = \frac{a \cdot b}{|a|^{2}} a = \left(\frac{a \cdot b}{a \cdot a}\right) a.$

EXAMPLE

Let a = (1, 1, 0) and b = (1, 1, 1). Compute the vector and scalar projections of b onto a.

・ 母 と ・ ヨ と ・ ヨ と

Suppose that a constant force vector F acts on an object moving it from P to Q.

Then the work done is component of F acting in the direction of $D = P\vec{Q}$ multiplied by the distance the object has moved, namely |PQ|.

So, if θ is the angle between the force vector F and the displacement vector D, then

 $W = (|F|\cos(\theta))|D| = |F||D|\cos(\theta) = F \cdot D.$

・ 同 ト ・ ヨ ト ・ ヨ ト …