MTHSC 206 Section 12.4 –Cross Products

Kevin James

Kevin James MTHSC 206 Section 12.4 –Cross Products

3 × 4 3 ×

DEFINITION

Suppose that $a = (a_1, a_2, a_3)$ and $b = (b_1, b_2, b_2)$ are vectors. We define the cross products $a \times b$ of a and b as

$$a \times b = \begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

向下 イヨト イヨト

DEFINITION

Suppose that $a = (a_1, a_2, a_3)$ and $b = (b_1, b_2, b_2)$ are vectors. We define the cross products $a \times b$ of a and b as

$$\begin{array}{lll} a \times b &=& \left| \begin{array}{ccc} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{array} \right| \\ &=& (a_2b_3 - a_3b_2)i + (a_3b_1 - a_1b_3)j + (a_1b_2 - a_2b_1)k. \end{array}$$

向下 イヨト イヨト

DEFINITION

Suppose that $a = (a_1, a_2, a_3)$ and $b = (b_1, b_2, b_2)$ are vectors. We define the cross products $a \times b$ of a and b as

$$\begin{array}{lll} a \times b &=& \left| \begin{array}{ccc} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{array} \right| \\ &=& (a_2b_3 - a_3b_2)i + (a_3b_1 - a_1b_3)j + (a_1b_2 - a_2b_1)k. \end{array}$$

Note

This definition will only work for 3 dimensional vectors.

・ 同 ト ・ ヨ ト ・ ヨ ト

1 Let a = (1, 3, 2) and b = (2, -1, 1). Compute $a \times b$.

1 Let a = (1, 3, 2) and b = (2, -1, 1). Compute $a \times b$.

2 Compute $(a \times b) \cdot a$ and $(a \times b) \cdot b$.

・ 回 と ・ ヨ と ・ ヨ と

1 Let
$$a = (1, 3, 2)$$
 and $b = (2, -1, 1)$. Compute $a \times b$.

2 Compute
$$(a \times b) \cdot a$$
 and $(a \times b) \cdot b$.

Theorem

Suppose that $a, b \in \mathbb{R}^3$. Then, the vector $a \times b$ is orthogonal to a and to b.

・ 回 と ・ ヨ と ・ ヨ と

1 Let
$$a = (1,3,2)$$
 and $b = (2,-1,1)$. Compute $a \times b$.

2 Compute
$$(a \times b) \cdot a$$
 and $(a \times b) \cdot b$.

Theorem

Suppose that $a, b \in \mathbb{R}^3$. Then, the vector $a \times b$ is orthogonal to a and to b.

1 Let
$$a = (1, 3, 2)$$
 and $b = (2, -1, 1)$. Compute $a \times b$.

2 Compute
$$(a \times b) \cdot a$$
 and $(a \times b) \cdot b$.

Theorem

Suppose that $a, b \in \mathbb{R}^3$. Then, the vector $a \times b$ is orthogonal to a and to b.

Proof.

$$(a \times b) \cdot a$$

= $((a_2b_3 - a_3b_2), (a_3b_1 - a_1b_3), (a_1b_2 - a_2b_1)) \cdot (a_1, a_2, a_3)$

イロン イヨン イヨン イヨン

1 Let
$$a = (1, 3, 2)$$
 and $b = (2, -1, 1)$. Compute $a \times b$.

2 Compute
$$(a \times b) \cdot a$$
 and $(a \times b) \cdot b$.

Theorem

Suppose that $a, b \in \mathbb{R}^3$. Then, the vector $a \times b$ is orthogonal to a and to b.

Proof.

$$\begin{array}{rcl} (a & \times & b) \cdot a \\ & = & ((a_2b_3 - a_3b_2), (a_3b_1 - a_1b_3), (a_1b_2 - a_2b_1)) \cdot (a_1, a_2, a_3) \\ & = & (a_2b_3 - a_3b_2)a_1 + (a_3b_1 - a_1b_3)a_2 + (a_1b_2 - a_2b_1)a_3 = \end{array}$$

イロン イヨン イヨン イヨン

1 Let
$$a = (1, 3, 2)$$
 and $b = (2, -1, 1)$. Compute $a \times b$.

2 Compute
$$(a \times b) \cdot a$$
 and $(a \times b) \cdot b$.

Theorem

Suppose that $a, b \in \mathbb{R}^3$. Then, the vector $a \times b$ is orthogonal to a and to b.

Proof.

$$\begin{array}{rcl} (a & \times & b) \cdot a \\ & = & ((a_2b_3 - a_3b_2), (a_3b_1 - a_1b_3), (a_1b_2 - a_2b_1)) \cdot (a_1, a_2, a_3) \\ & = & (a_2b_3 - a_3b_2)a_1 + (a_3b_1 - a_1b_3)a_2 + (a_1b_2 - a_2b_1)a_3 = 0. \end{array}$$

イロン イヨン イヨン イヨン

1 Let
$$a = (1, 3, 2)$$
 and $b = (2, -1, 1)$. Compute $a \times b$.

2 Compute
$$(a \times b) \cdot a$$
 and $(a \times b) \cdot b$.

Theorem

Suppose that $a, b \in \mathbb{R}^3$. Then, the vector $a \times b$ is orthogonal to a and to b.

Proof.

$$(a \times b) \cdot a = ((a_2b_3 - a_3b_2), (a_3b_1 - a_1b_3), (a_1b_2 - a_2b_1)) \cdot (a_1, a_2, a_3) = (a_2b_3 - a_3b_2)a_1 + (a_3b_1 - a_1b_3)a_2 + (a_1b_2 - a_2b_1)a_3 = 0.$$

You can check orthogonality to b.

• • • •

< 3 > <

Suppose that $a, b \in \mathbb{R}^3$ and that θ is the angle between them. Then $|a \times b| = |a||b|\sin(\theta)$.

御 と く き と く き と

Suppose that $a, b \in \mathbb{R}^3$ and that θ is the angle between them. Then $|a \times b| = |a||b|\sin(\theta)$.

Sketch of proof...

$$|a \times b|^2 = (a_2b_3 - a_3b_2)^2 + (a_3b_1 - a_1b_3)^2 + (a_1b_2 - a_2b_1)^2$$

イロン イヨン イヨン イヨン

Suppose that $a, b \in \mathbb{R}^3$ and that θ is the angle between them. Then $|a \times b| = |a||b|\sin(\theta)$.

Sketch of proof...

$$\begin{aligned} |a \times b|^2 &= (a_2b_3 - a_3b_2)^2 + (a_3b_1 - a_1b_3)^2 + (a_1b_2 - a_2b_1)^2 \\ \dots &= (a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2) - (a_1b_1 + a_2b_2 + a_3b_3)^2 \end{aligned}$$

イロン 不同と 不同と 不同と

Suppose that $a, b \in \mathbb{R}^3$ and that θ is the angle between them. Then $|a \times b| = |a||b|\sin(\theta)$.

Sketch of proof...

$$\begin{aligned} |a \times b|^2 &= (a_2b_3 - a_3b_2)^2 + (a_3b_1 - a_1b_3)^2 + (a_1b_2 - a_2b_1)^2 \\ \dots &= (a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2) - (a_1b_1 + a_2b_2 + a_3b_3)^2 \\ &= |a|^2|b|^2 - (a \cdot b)^2 \end{aligned}$$

・ロン ・回と ・ヨン・

Suppose that $a, b \in \mathbb{R}^3$ and that θ is the angle between them. Then $|a \times b| = |a||b|\sin(\theta)$.

Sketch of proof...

$$\begin{aligned} |a \times b|^2 &= (a_2b_3 - a_3b_2)^2 + (a_3b_1 - a_1b_3)^2 + (a_1b_2 - a_2b_1)^2 \\ \dots &= (a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2) - (a_1b_1 + a_2b_2 + a_3b_3)^2 \\ &= |a|^2|b|^2 - (a \cdot b)^2 \\ &= |a|^2|b|^2 - (|a||b|\cos(\theta))^2 \end{aligned}$$

イロン イヨン イヨン イヨン

Suppose that $a, b \in \mathbb{R}^3$ and that θ is the angle between them. Then $|a \times b| = |a||b|\sin(\theta)$.

Sketch of proof...

$$\begin{aligned} |a \times b|^2 &= (a_2b_3 - a_3b_2)^2 + (a_3b_1 - a_1b_3)^2 + (a_1b_2 - a_2b_1)^2 \\ \dots &= (a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2) - (a_1b_1 + a_2b_2 + a_3b_3)^2 \\ &= |a|^2|b|^2 - (a \cdot b)^2 \\ &= |a|^2|b|^2 - (|a||b|\cos(\theta))^2 \\ &= |a|^2|b|^2(1 - \cos^2(\theta)). \end{aligned}$$

- - 4 回 ト - 4 回 ト

COROLLARY

Two nonzero vectors $a, b \in \mathbb{R}^3$ are parallel if and only if $a \times b = 0$.

3 × 4 3 ×

COROLLARY

Two nonzero vectors $a, b \in \mathbb{R}^3$ are parallel if and only if $a \times b = 0$.

Fact

The area of the parallelogram determined by $a, b \in \mathbb{R}^3$ is given by $|a \times b|$.

向下 イヨト イヨト

COROLLARY

Two nonzero vectors $a, b \in \mathbb{R}^3$ are parallel if and only if $a \times b = 0$.

Fact

The area of the parallelogram determined by a, $b \in \mathbb{R}^3$ is given by $|a \times b|$.

EXERCISE

Find the area of the triangle with vertices P = (1, 1, 1), Q = (1, 2, 1) and R = (2, 2, 3).

向下 イヨト イヨト

Note

$$i \times j = k$$
 $j \times k = i$, $k \times i = j$.
 $j \times i = -k$ $k \times j = -i$, $i \times k = -j$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Note

$$i \times j = k$$
 $j \times k = i$, $k \times i = j$.
 $j \times i = -k$ $k \times j = -i$, $i \times k = -j$.

Properties of \times

Suppose that $a, b, c \in \mathbb{R}^3$ and $d \in \mathbb{R}$. Then,

・ロン ・回と ・ヨン ・ヨン

THEOREM

The volume of the parallelepiped determined by $a, b, c \in \mathbb{R}^3$ is given by $V = |a \cdot (b \times c)|$.

向下 イヨト イヨト

Theorem

The volume of the parallelepiped determined by $a, b, c \in \mathbb{R}^3$ is given by $V = |a \cdot (b \times c)|$.

Proof.

V = (Area of parallelogram determined by b and c) * (height)

Theorem

The volume of the parallelepiped determined by $a, b, c \in \mathbb{R}^3$ is given by $V = |a \cdot (b \times c)|$.

Proof.

- V = (Area of parallelogram determined by b and c) * (height)
 - = (height) $* |b \times c|$

Theorem

The volume of the parallelepiped determined by $a, b, c \in \mathbb{R}^3$ is given by $V = |a \cdot (b \times c)|$.

Proof.

- V = (Area of parallelogram determined by b and c) * (height)
 - = (height) $* |b \times c|$
 - $= |\operatorname{Proj}_{b \times c}(a)| * |b \times c|$

Theorem

The volume of the parallelepiped determined by $a, b, c \in \mathbb{R}^3$ is given by $V = |a \cdot (b \times c)|$.

Proof.

V = (Area of parallelogram determined by b and c) * (height)

c

= (height) $* |b \times c|$

$$= |\operatorname{Proj}_{b \times c}(a)| * |b \times c|$$
$$= \left| \frac{(b \times c) \cdot a}{|b \times c|^2} (b \times c) \right| * |b \times c|$$

Theorem

The volume of the parallelepiped determined by $a, b, c \in \mathbb{R}^3$ is given by $V = |a \cdot (b \times c)|$.

Proof.

- V = (Area of parallelogram determined by b and c) * (height)
 - = (height) $* |b \times c|$

$$= |\operatorname{Proj}_{b \times c}(a)| * |b \times c|$$

$$= \left| \frac{(b \times c) \cdot a}{|b \times c|^2} (b \times c) \right| * |b \times c|$$
$$= \frac{|(b \times c) \cdot a|}{|b \times c|^2} |b \times c| * |b \times c|$$

Use the vector triple product to show that the vectors a = (1, 1, 1), b = (1, 2, 1) and c = (2, 1, 2) are coplanar.

ヨット イヨット イヨッ

Suppose that a force vector F acts on one end a rigid body which is fixed at its other end and is represented by the position vector r. We define the torque vector τ as

$$\tau = \mathbf{r} \times \mathbf{F}.$$

Suppose that a force vector F acts on one end a rigid body which is fixed at its other end and is represented by the position vector r. We define the torque vector τ as

$\tau = \mathbf{r} \times \mathbf{F}.$

The torque vector indicates the direction of rotation (using the right-hand rule) and measures the tendency of the object to rotate about the origin.

Suppose that a force vector F acts on one end a rigid body which is fixed at its other end and is represented by the position vector r. We define the torque vector τ as

$$\tau = \mathbf{r} \times \mathbf{F}.$$

The torque vector indicates the direction of rotation (using the right-hand rule) and measures the tendency of the object to rotate about the origin.

Note that

$$|\tau| = |\mathbf{r} \times \mathbf{F}| = |\mathbf{r}||\mathbf{F}|\sin(\theta),$$

where θ is the angle between F and r.