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Definition

Suppose that a = (a1, a2, a3) and b = (b1, b2, b2) are vectors. We
define the cross products a× b of a and b as

a× b =

∣∣∣∣∣∣
i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣
=

(a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k .

Note

This definition will only work for 3 dimensional vectors.

Kevin James MTHSC 206 Section 12.4 –Cross Products



Definition

Suppose that a = (a1, a2, a3) and b = (b1, b2, b2) are vectors. We
define the cross products a× b of a and b as

a× b =

∣∣∣∣∣∣
i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣
= (a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k .

Note

This definition will only work for 3 dimensional vectors.

Kevin James MTHSC 206 Section 12.4 –Cross Products



Definition

Suppose that a = (a1, a2, a3) and b = (b1, b2, b2) are vectors. We
define the cross products a× b of a and b as

a× b =

∣∣∣∣∣∣
i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣
= (a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k .

Note

This definition will only work for 3 dimensional vectors.

Kevin James MTHSC 206 Section 12.4 –Cross Products



Exercise

1 Let a = (1, 3, 2) and b = (2,−1, 1). Compute a× b.

2 Compute (a× b) · a and (a× b) · b.

Theorem

Suppose that a, b ∈ R3. Then, the vector a× b is orthogonal to a
and to b.

Proof.

(a × b) · a
= ((a2b3 − a3b2), (a3b1 − a1b3), (a1b2 − a2b1)) · (a1, a2, a3)

= (a2b3 − a3b2)a1 + (a3b1 − a1b3)a2 + (a1b2 − a2b1)a3 = 0.

You can check orthogonality to b.
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Theorem

Suppose that a, b ∈ R3 and that θ is the angle between them.
Then |a× b| = |a||b| sin(θ).

Sketch of proof...

|a× b|2 = (a2b3 − a3b2)2 + (a3b1 − a1b3)2 + (a1b2 − a2b1)2

... = (a21 + a22 + a23)(b21 + b22 + b23)− (a1b1 + a2b2 + a3b3)2

= |a|2|b|2 − (a · b)2

= |a|2|b|2 − (|a||b| cos(θ))2

= |a|2|b|2(1− cos2(θ)).
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Corollary

Two nonzero vectors a, b ∈ R3 are parallel if and only if a× b = 0.

Fact

The area of the parallelogram determined by a, b ∈ R3 is given by
|a× b|.

Exercise

Find the area of the triangle with vertices P = (1, 1, 1),
Q = (1, 2, 1) and R = (2, 2, 3).
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Note

i × j = k j × k = i , k × i = j .

j × i = −k k × j = −i , i × k = −j .

Properties of ×
Suppose that a, b, c ∈ R3 and d ∈ R. Then,

1 a× b = −b × a.

2 (da)× b = d(a× b) = a× (db).

3 a× (b + c) = a× b + a× c .

4 (a + b)× c = a× c + b × c .

5 a · (b × c) = (a× b) · c .

6 a× (b × c) = (a · c)b − (a · b)c . In particular × is not
associative.
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Volumes and Triple Products

Theorem

The volume of the parallelepiped determined by a, b, c ∈ R3 is
given by V = |a · (b × c)|.

Proof.

V = (Area of parallelogram determined by b and c) ∗ (height)

= (height) ∗ |b × c |
= |Projb×c(a)| ∗ |b × c |

=

∣∣∣∣(b × c) · a
|b × c |2

(b × c)

∣∣∣∣ ∗ |b × c |

=
|(b × c) · a|
|b × c |2

|b × c | ∗ |b × c |
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Exercise

Use the vector triple product to show that the vectors a = (1, 1, 1),
b = (1, 2, 1) and c = (2, 1, 2) are coplanar.
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Application: Torque

Suppose that a force vector F acts on one end a rigid body which
is fixed at its other end and is represented by the position vector r .
We define the torque vector τ as

τ = r × F .

The torque vector indicates the direction of rotation (using the
right-hand rule) and measures the tendency of the object to rotate
about the origin.
Note that

|τ | = |r × F | = |r ||F | sin(θ),

where θ is the angle between F and r .
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