MTHSC 206 Section 12.6 – Cylinders and Quadric Surfaces

Kevin James

Curve Sketching

Note

In order to draw 3D pictures it is useful to compute the intersections of a surface with planes parallel to the coordinate planes. The resulting curves are called <u>traces</u>.

Curve Sketching

Note

In order to draw 3D pictures it is useful to compute the intersections of a surface with planes parallel to the coordinate planes. The resulting curves are called <u>traces</u>.

DEFINITION

A <u>cylinder</u> is a surface which consists of all lines which are parallel to a given line and which pass through a given plane curve.

Curve Sketching

Note

In order to draw 3D pictures it is useful to compute the intersections of a surface with planes parallel to the coordinate planes. The resulting curves are called $\underline{\text{traces}}$.

DEFINITION

A <u>cylinder</u> is a surface which consists of all lines which are parallel to a given line and which pass through a given plane curve.

EXAMPLE

Graph the following cylinders.

1
$$z = y^2$$

$$2 x^2 + y^2 = 25.$$

$$x^2 + z^2 = 36$$
.

Definition

A quadric surface is the graph of an equation of degree 2 in the variables x, y and z.

Definition

A quadric surface is the graph of an equation of degree 2 in the variables x, y and z.

Note

The most general such equation is

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0,$$

where $A, B, C, D, E, F, G, H, I, J \in \mathbb{R}$.

DEFINITION

A quadric surface is the graph of an equation of degree 2 in the variables x, y and z.

Note

The most general such equation is

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0,$$

where $A, B, C, D, E, F, G, H, I, J \in \mathbb{R}$.

However, by translating (moving in the x-, y-, and z-directions) the surface can be assumed to have an equation of one of the following forms.

2
$$Ax^2 + By^2 + Cz^2 + J = 0$$
.

EXERCISE

Graph the following surfaces.

- **1** Ellipsoid: $\frac{x^2}{25} + y^2 + \frac{z^2}{4} = 0$.
- 2 Elliptic Paraboloid: $z = x^2 + 9y^2$.
- **3** Hyperbolic Paraboloid: $z = x^2 y^2$.
- **4** Cone: $z^2 = x^2 + y^2$.
- **6** Hyperboloid of One Sheet: $x^2 + y^2 z^2 = 1$.
- **6** Hyperboloid of Two Sheets: $-x^2 y^2 + z^2 = 1$.