MTHSC 206 SECTION 13.1 – VECTOR FUNCTIONS AND SPACE CURVES

Kevin James

A <u>vector valued function</u> is a function of a real variable whose output is a vector.

A <u>vector valued function</u> is a function of a real variable whose output is a vector.

That is, for each $t \in \mathbb{R}$ there is a vector $r(t) \in \mathbb{R}^3$.

A <u>vector valued function</u> is a function of a real variable whose output is a vector.

That is, for each $t \in \mathbb{R}$ there is a vector $r(t) \in \mathbb{R}^3$.

We usually write r(t) = (f(t), g(t), h(t)) where f, g and h are real valued functions called the components of r.

A <u>vector valued function</u> is a function of a real variable whose output is a vector.

That is, for each $t \in \mathbb{R}$ there is a vector $r(t) \in \mathbb{R}^3$.

We usually write r(t) = (f(t), g(t), h(t)) where f, g and h are real valued functions called the components of r.

EXAMPLE

$$r(t) = (1 + \frac{1}{t}, \frac{1}{t^2}, 2 + e^{-t}).$$

We define the limit of a vector valued function as follows. If r(t) = (f(t), g(t), h(t)), then we define

$$\lim_{t\to a} r(t) = \left(\lim_{t\to a} f(t), \lim_{t\to a} g(t), \lim_{t\to a} h(t)\right)$$

We define the limit of a vector valued function as follows. If r(t) = (f(t), g(t), h(t)), then we define

$$\lim_{t\to a} r(t) = \left(\lim_{t\to a} f(t), \lim_{t\to a} g(t), \lim_{t\to a} h(t)\right)$$

EXAMPLE

Take $r(t) = (1 + \frac{1}{t}, \frac{1}{t^2}, 2 + e^{-t})$ as above. Then,

We define the limit of a vector valued function as follows. If r(t) = (f(t), g(t), h(t)), then we define

$$\lim_{t\to a} r(t) = \left(\lim_{t\to a} f(t), \lim_{t\to a} g(t), \lim_{t\to a} h(t)\right)$$

EXAMPLE

Take
$$r(t)=\left(1+\frac{1}{t},\frac{1}{t^2},2+e^{-t}\right)$$
 as above. Then,

$$\lim_{t\to\infty}r(t)=(1,0,2).$$

We say that a vector function r(t) is <u>continuous at a</u> if

$$\lim_{t\to a}r(t)=r(a).$$

We say that a vector function r(t) is <u>continuous at a</u> if

$$\lim_{t\to a}r(t)=r(a).$$

Note

This means that r(t) is continuous if and only if its components are all continuous.

We say that a vector function r(t) is <u>continuous at a</u> if

$$\lim_{t\to a}r(t)=r(a).$$

Note

This means that r(t) is continuous if and only if its components are all continuous.

DEFINITION

Suppose that f, g and h are real valued functions and that $C = \{(f(t), g(t), h(t)) \mid t \in \mathbb{R}\}$. We say that C is a space curve.

We say that a vector function r(t) is <u>continuous at a</u> if

$$\lim_{t\to a}r(t)=r(a).$$

Note

This means that r(t) is continuous if and only if its components are all continuous.

DEFINITION

Suppose that f, g and h are real valued functions and that $C = \{(f(t), g(t), h(t)) \mid t \in \mathbb{R}\}$. We say that C is a space curve. The equations x = f(t), y = g(t), z = h(t) are called parametric equations for C and t is called a parameter.

FROM ALGEBRAIC DESCRIPTIONS TO GEOMETRIC ONES

EXAMPLE

Describe the curve defined by the vector function

$$r(t) = (1 + 2t, 3 - 7t, 2 + 8t).$$

From algebraic descriptions to geometric ones

EXAMPLE

Describe the curve defined by the vector function

$$r(t) = (1 + 2t, 3 - 7t, 2 + 8t).$$

EXAMPLE

Sketch the curve whose vector equation is given by

$$r(t) = i\cos(t) + i\sin(t) + k.$$

From geometric descriptions to algebraic ones

EXAMPLE

Find a vector equation and parametric equations for the line segment that joins (1,1,0) to the point (2,3,5).

FROM GEOMETRIC DESCRIPTIONS TO ALGEBRAIC ONES

EXAMPLE

Find a vector equation and parametric equations for the line segment that joins (1,1,0) to the point (2,3,5).

EXAMPLE

Find a vector function that represents the curve of intersection of the cylinder $x^2 + y^2 = 25$ with the plane x + y - z = 1.