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Definition

Suppose that an object’s position at time t is given by the vector
function r(t). Then,

1 The velocity vector of the object at time t is given by
v(t) = r ′(t).

2 The speed of the object is given by |v(t)| = |r ′(t)| = ds
dt .

3 The acceleration vector of the object at time t is given by
a(t) = v ′(t) = r ′′(t).

Newton’s second law of motion

F (t) = ma(t).
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Example

Suppose that a projectile is to be fired into the air at an angle of α
from the ground with an initial velocity vector of magnitude v0.
What is the position function for the projectile? What angle will
maximize the distance the projectile will travel before returning to
the ground. You may assume that the only external force acting on
the projectile is gravity. (Acceleration due to gravity is 9.8 m/s2.)
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Tangential and Normal Components of
Acceleration

Letting s(t) = |v(t)| denote the speed of the particle.

Then we have

T (t) =
r ′(t)

|r ′(t)|
=

v(t)

s(t)
⇒ v = T s

⇒ a = T ′s + T s′

Recall that

κ =
|T ′|
|r ′|

=
|T ′|
s

⇒ |T ′| = κs. and

N =
T ′

|T ′|
⇒ T ′ = N|T ′| = Nκs.

So, a = s′T + κs2N.
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So, we have a = aTT + aNN, wherer aT = s′ and aN = κs2.

Note that v · a = sT · (s′T + κs2N) = ss′.
Thus, aT = v ·a

s = r ′·r ′′
|r ′| .

By our theorem on curvature, we have

aN = κs2 = |r ′×r ′′|
|r ′|3 |r

′|2 = |r ′×r ′′|
|r ′| .

Fact

We can decompose acceleration into its tangential and normal
components as

a =
r ′ · r ′′

|r ′|
T +

|r ′ × r ′′|
|r ′|

N.
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Kepler’s Laws of Planetary Motion

Before discussing Kepler’s laws, we should review ellipses.

Definition

An ellipse is a set of points the sum of whose distances from two
fixed Foci F1 and F2 is constant.

Fact

Suppose that the two foci are placed at (±c , 0) and that the
constant sum of distances is 2a. Then the points on the ellipse
described above satisfy

x2

a2
+

y2

b2
= 1.
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Fact (Alternative Definition)

Let F be a fixed point (focus) and let ` be a fixed line (direction)
in a plane. Let e be a fixed positive number (eccentricity). The set

of all points P satisfying |PF ||P`| = e is an ellipse if e < 1 (a parabola

if e = 1 and a hyperbola if e > 1).

Fact

The polar equation for the curve described above is

r =
ed

1 + e cos(θ)
,

where d = |F `|.
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Kepler’s Laws

1 A planet revolves around the sun in an elliptical orbit with the
sun at one focus.

2 The line joining the sun to a planet sweeps out equal areas in
equal times.

3 The square of the period of revolution of a planet is
proportional to the cube of the length of the major axis of its
orbit.

Newton’s Laws of Motion and Gravitation

2nd Law of Motion F = ma.

Gravitation F = −GMm
|r |3 r = −GMm

|r |2 u.
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From Newton’s Laws, we have

a =
−GM

|r |3
r .

Thus r and a are parallel which implies that r × a = 0.
We have

d

dt
(r × v) = r ′ × v + r × v ′

= v × v + r × a

= 0.

Thus, r × v = h, where h is a constant.
We may assume that h 6= 0, that is that r and v are not parallel.
Note that this means that r(t) ⊥ h for all t.
So, the orbit of the planet lies in a plane with normal vector h.
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Let’s rewrite h as

h = r × v = r × r ′ = |r |u × (|r |u)′

= |r |u × (|r |′u + |r |u′) = |r ||r |′(u × u) + |r |2(u × u′)

= |r |2(u × u′).

Then,

a× h =
−GM

|r |2
u × (|r |2u × u′) = −GMu × (u × u′)

= −GM[(u · u′)u − (u · u)u′]

= GMu′.

Thus, (v × h)′ = a× h = GMu′.
Integrating both sides gives v × h = GMu + c , where c is a
constant vector.
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Note that v × h, u ⊥ h.

Thus, c is in the plane normal to h.
So we will choose coordinate axes so that k points in the direction
of h and so that i points in the direction of c .
Now, letting θ denote the angle between c and r ,
(|r |, θ) are the polar coordinates of the planet in the xy -plane.
We now have,

r · (v × h) = r · (GMu + c) = GMr · u + r · c
= GM|r |u · u + |r ||c| cos(θ) = GM|r |+ |r ||c | cos(θ)

Solving for |r |, we have

|r | =
r · (v × h)

GM + |c | cos(θ)
.

Noting that r · (v × h) = (r × v) · h = h · h = |h|2, we have

|r | =
|h|2/GM

1 + |c |/GM cos(θ)
.
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Note that v × h, u ⊥ h. Thus, c is in the plane normal to h.
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Now, letting e = |c|
GM and d = |h|2

|c| , we see that the polar

coordinates (|r |, θ), must satisfy

|r | =
de

1 + e cos(θ)
,

which is the polar coordinates equation for a conic section.

Since, the orbit of a planet is a closed curve, we deduce that e < 1
and that the curve is an ellipse.
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