MTHSC 206 Section 15.6 – Surface Area

Kevin James

Kevin James MTHSC 206 Section 15.6 – Surface Area

문 🕨 👘 문

SURFACE AREA

Suppose that a surface S in \mathbb{R}^3 is given as the graph of a function f(x, y) of two variables which has continuous partials f_x and f_y as x and y vary over a rectangle $D = [a, b] \times [c, d]$. We would like to compute the surface area A(S) of S. We define $\Delta x = \frac{b-a}{r}$ and $\Delta y = \frac{d-c}{r}$ as usual. Let $x_i = a + (i-1)\Delta x$, $y_i = c + (i-1)\Delta y$ and let $R_{i,i} = \{(x, y) \mid x_i < x < x_{i+1}; y_i < y, y_{i+1}\}.$ Let $T_{i,i} = \{(x, y, f(x, y)) \mid (x, y) \in R_{i,i}\}.$ We will approximate the area of $T_{i,i}$ by computing the area $\Delta T_{i,i}$ of the parallelogram lying in the tangent plane of S at (x_i, y_i) and lying above $R_{i,i}$. $\Delta T_{i,i} = |(\Delta x, 0, f_x(x_i, y_i)\Delta x) \times (0, \Delta y, f_y(x_i, y_i)\Delta y)|$ $= |(-f_x(x_i, y_i), -f_y(x_i, y_i), 1) \Delta x \Delta y|$ $= \sqrt{f_x(x_i, y_i)^2 + f_y(x_i, y_i)^2 + 1} \Delta x \Delta y.$

▲圖▶ ★ 国▶ ★ 国▶

DEFINITION

If S is a surface in \mathbb{R}^3 is given as the graph of a function f(x, y) of two variables which has continuous partials f_x and f_y as x and y vary over a rectangle $D = [a, b] \times [c, d]$, then we define

$$A(S) = \lim_{m,n\to\infty} \sum_{i=1}^{n} \sum_{j=1}^{m} \sqrt{f_x(x_i, y_j)^2 + f_y(x_i, y_j)^2 + 1} \Delta x \Delta y$$

= $\int \int_D \sqrt{f_x(x, y)^2 + f_y(x, y)^2 + 1} \, dA.$

EXAMPLE

Compute the area of the part of the paraboloid $z = x^2 + y^2$ lying below the plane z = 4.

・日本 ・ モン・ ・ モン

æ