MTHSC 206 Section 15.6 – Surface Area

Kevin James

Suppose that a surface S in \mathbb{R}^3 is given as the graph of a function f(x,y) of two variables which has continuous partials f_x and f_y as x and y vary over a rectangle $D = [a,b] \times [c,d]$.

Suppose that a surface S in \mathbb{R}^3 is given as the graph of a function f(x,y) of two variables which has continuous partials f_x and f_y as x and y vary over a rectangle $D = [a,b] \times [c,d]$. We would like to compute the surface area A(S) of S.

Suppose that a surface S in \mathbb{R}^3 is given as the graph of a function f(x,y) of two variables which has continuous partials f_x and f_y as x and y vary over a rectangle $D=[a,b]\times [c,d]$. We would like to compute the surface area A(S) of S. We define $\Delta x=\frac{b-a}{2}$ and $\Delta y=\frac{d-c}{2}$ as usual.

Suppose that a surface S in \mathbb{R}^3 is given as the graph of a function f(x,y) of two variables which has continuous partials f_x and f_y as x and y vary over a rectangle $D=[a,b]\times [c,d]$. We would like to compute the surface area A(S) of S. We define $\Delta x=\frac{b-a}{n}$ and $\Delta y=\frac{d-c}{m}$ as usual. Let $x_i=a+(i-1)\Delta x,\ y_j=c+(j-1)\Delta y$ and let $R_{i,j}=\{(x,y)\mid x_i< x< x_{i+1}; y_i< y, y_{j+1}\}.$

Suppose that a surface S in \mathbb{R}^3 is given as the graph of a function f(x,y) of two variables which has continuous partials f_x and f_y as x and y vary over a rectangle $D=[a,b]\times [c,d]$. We would like to compute the surface area A(S) of S. We define $\Delta x=\frac{b-a}{n}$ and $\Delta y=\frac{d-c}{m}$ as usual. Let $x_i=a+(i-1)\Delta x,\ y_j=c+(j-1)\Delta y$ and let $R_{i,j}=\{(x,y)\mid x_i< x< x_{i+1};y_j< y,y_{j+1}\}.$ Let $T_{i,j}=\{(x,y,f(x,y))\mid (x,y)\in R_{i,j}\}.$

Suppose that a surface S in \mathbb{R}^3 is given as the graph of a function f(x,y) of two variables which has continuous partials f_x and f_y as x and y vary over a rectangle $D = [a,b] \times [c,d]$.

We would like to compute the surface area A(S) of S.

We define $\Delta x = \frac{b-a}{n}$ and $\Delta y = \frac{d-c}{m}$ as usual.

Let $x_i = a + (i-1)\Delta x$, $y_j = c + (j-1)\Delta y$ and let

$$R_{i,j} = \{(x,y) \mid x_i < x < x_{i+1}; y_j < y, y_{j+1}\}.$$

Let
$$T_{i,j} = \{(x, y, f(x, y)) \mid (x, y) \in R_{i,j}\}.$$

Suppose that a surface S in \mathbb{R}^3 is given as the graph of a function f(x,y) of two variables which has continuous partials f_x and f_y as x and y vary over a rectangle $D = [a,b] \times [c,d]$.

We would like to compute the surface area A(S) of S.

We define $\Delta x = \frac{b-a}{n}$ and $\Delta y = \frac{d-c}{m}$ as usual.

Let
$$x_i = a + (i-1)\Delta x$$
, $y_j = c + (j-1)\Delta y$ and let

$$R_{i,j} = \{(x,y) \mid x_i < x < x_{i+1}; y_j < y, y_{j+1}\}.$$

Let
$$T_{i,j} = \{(x, y, f(x, y)) \mid (x, y) \in R_{i,j}\}.$$

$$\Delta T_{i,j} = |(\Delta x, 0, f_x(x_i, y_j)\Delta x) \times (0, \Delta y, f_y(x_i, y_j)\Delta y)|$$

Suppose that a surface S in \mathbb{R}^3 is given as the graph of a function f(x,y) of two variables which has continuous partials f_x and f_y as x and y vary over a rectangle $D = [a,b] \times [c,d]$.

We would like to compute the surface area A(S) of S.

We define $\Delta x = \frac{b-a}{n}$ and $\Delta y = \frac{d-c}{m}$ as usual.

Let
$$x_i = a + (i-1)\Delta x$$
, $y_j = c + (j-1)\Delta y$ and let

$$R_{i,j} = \{(x,y) \mid x_i < x < x_{i+1}; y_j < y, y_{j+1}\}.$$

Let
$$T_{i,j} = \{(x, y, f(x, y)) \mid (x, y) \in R_{i,j}\}.$$

$$\Delta T_{i,j} = |(\Delta x, 0, f_x(x_i, y_j)\Delta x) \times (0, \Delta y, f_y(x_i, y_j)\Delta y)|$$

$$= |(-f_x(x_i, y_j), -f_y(x_i, y_j), 1) \Delta x \Delta y|$$

Suppose that a surface S in \mathbb{R}^3 is given as the graph of a function f(x,y) of two variables which has continuous partials f_x and f_y as x and y vary over a rectangle $D = [a,b] \times [c,d]$.

We would like to compute the surface area A(S) of S.

We define $\Delta x = \frac{b-a}{n}$ and $\Delta y = \frac{d-c}{m}$ as usual.

Let
$$x_i = a + (i-1)\Delta x$$
, $y_j = c + (j-1)\Delta y$ and let

$$R_{i,j} = \{(x,y) \mid x_i < x < x_{i+1}; y_j < y, y_{j+1}\}.$$

Let
$$T_{i,j} = \{(x, y, f(x, y)) \mid (x, y) \in R_{i,j}\}.$$

$$\Delta T_{i,j} = |(\Delta x, 0, f_x(x_i, y_j) \Delta x) \times (0, \Delta y, f_y(x_i, y_j) \Delta y)|
= |(-f_x(x_i, y_j), -f_y(x_i, y_j), 1) \Delta x \Delta y|
= \sqrt{f_x(x_i, y_j)^2 + f_y(x_i, y_j)^2 + 1} \Delta x \Delta y.$$

DEFINITION

If S is a surface in \mathbb{R}^3 is given as the graph of a function f(x, y) of two variables which has continuous partials f_x and f_y as x and y vary over a rectangle $D = [a, b] \times [c, d]$, then we define

$$A(S) = \lim_{m,n\to\infty} \sum_{i=1}^{n} \sum_{j=1}^{m} \sqrt{f_x(x_i, y_j)^2 + f_y(x_i, y_j)^2 + 1} \Delta x \Delta y$$
$$= \int \int_{D} \sqrt{f_x(x, y)^2 + f_y(x, y)^2 + 1} \, dA.$$

EXAMPLE

Compute the area of the part of the paraboloid $z = x^2 + y^2$ lying below the plane z = 4.