MTHSC 206 Section 15.9 – Triple Integrals in Spherical Coordinates

Kevin James

Kevin James MTHSC 206 Section 15.9 – Triple Integrals in Spherical Coord

米部 シネヨシネヨシ 三日

DEFINITION

We can express the location any point P = (x, y, z) in \mathbb{R}^3 by specifying

- **1** the angle θ between the x-axis and the line from O to the projection of P into the xy-plane (x, y, 0) and
- **2** the angle ϕ between the *z*-axis and the line segment \overline{OP} .
- **3** the distance ρ from *P* to the origin *O*,

The triple (ρ, θ, ϕ) is called the spherical coordinates of *P*.

Note

We note that $\rho \geq 0$, $0 \leq \theta < 2\pi$ and $0 \leq \phi \leq \pi$.

イロン イヨン イヨン イヨン

Fact

The relationship between the spherical coordinates (ρ, θ, ϕ) and the Euclidean coordinates (x, y, z) is given by

$$x = \rho \sin(\phi) \cos(\theta), \quad y = \rho \sin(\phi) \sin(\theta), \quad z = \rho \cos(\phi)$$
$$\rho^2 = x^2 + y^2 + z^2$$

Example

- **1** The Euclidean coordinates of the point with spherical coordinates $(3, \frac{\pi}{3}, \frac{\pi}{4})$ are $(\frac{3\sqrt{6}}{4}, \frac{3\sqrt{2}}{4}, \frac{3\sqrt{2}}{2})$.
- 2 The spherical coordinates of the point with Euclidean coordinates $(6, 6, 2\sqrt{6})$ are $(4\sqrt{6}, \frac{\pi}{4}, \frac{\pi}{3})$.

(ロ) (同) (E) (E) (E)

Note

The spherical wedge determined by a change of angles $\Delta \theta$ from θ and $\Delta \phi$ from ϕ and a change of radius $\Delta \rho$ from ρ is $\rho^2 \sin(\phi) \Delta \rho \Delta \theta \Delta \phi$. Thus if *E* is the spherical wedge $\{(\rho, \theta, \phi) \mid a \le \rho \le b; \alpha \le \theta \le \beta; c \le \phi \le d\}$, then we can derive the following formula for triple integration in spherical coordinates. $\int \int \int_{E} f(x, y, z) \, dV =$

 $\int_{c}^{d} \int_{\alpha}^{\beta} \int_{a}^{b} \rho^{2} \sin(\phi) f(\rho \sin(\phi) \cos(\theta), \rho \sin(\phi) \sin(\theta), \rho \cos(\phi)) \, \mathrm{d}\rho \, \mathrm{d}\theta \, \mathrm{d}\phi$

EXAMPLE

Evaluate $\int \int \int_B e^{(x^2+y^2+z^2)^{3/2}} dV$ where B is the unit ball about the origin.

EXAMPLE

Find the volume of the solid that lies above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = z$.

(本部) (本語) (本語) (語)