MTHSC 206 Section 15.9 – Triple Integrals in Spherical Coordinates

Kevin James

Definition

We can express the location any point P = (x, y, z) in \mathbb{R}^3 by specifying

1 the angle θ between the x-axis and the line from O to the projection of P into the xy-plane (x, y, 0) and

DEFINITION

We can express the location any point P = (x, y, z) in \mathbb{R}^3 by specifying

- 1 the angle θ between the x-axis and the line from O to the projection of P into the xy-plane (x, y, 0) and
- 2 the angle ϕ between the z-axis and the line segment \overline{OP} .

Definition

We can express the location any point P = (x, y, z) in \mathbb{R}^3 by specifying

- 1 the angle θ between the x-axis and the line from O to the projection of P into the xy-plane (x, y, 0) and
- 2 the angle ϕ between the z-axis and the line segment \overline{OP} .
- **3** the distance ρ from P to the origin O,

DEFINITION

We can express the location any point P = (x, y, z) in \mathbb{R}^3 by specifying

- 1 the angle θ between the x-axis and the line from O to the projection of P into the xy-plane (x, y, 0) and
- 2 the angle ϕ between the z-axis and the line segment $\overline{\mathit{OP}}$.
- **3** the distance ρ from P to the origin O,

The triple (ρ, θ, ϕ) is called the <u>spherical coordinates</u> of P.

DEFINITION

We can express the location any point P = (x, y, z) in \mathbb{R}^3 by specifying

- 1 the angle θ between the x-axis and the line from O to the projection of P into the xy-plane (x, y, 0) and
- 2 the angle ϕ between the z-axis and the line segment \overline{OP} .
- **3** the distance ρ from P to the origin O,

The triple (ρ, θ, ϕ) is called the spherical coordinates of P.

Note

We note that $\rho \geq 0$, $0 \leq \theta < 2\pi$ and $0 \leq \phi \leq \pi$.

FACT

The relationship between the spherical coordinates (ρ, θ, ϕ) and the Euclidean coordinates (x, y, z) is given by

$$x = \rho \sin(\phi) \cos(\theta), \quad y = \rho \sin(\phi) \sin(\theta), \quad z = \rho \cos(\phi)$$
$$\rho^2 = x^2 + y^2 + z^2$$

FACT

The relationship between the spherical coordinates (ρ, θ, ϕ) and the Euclidean coordinates (x, y, z) is given by

$$x = \rho \sin(\phi) \cos(\theta), \quad y = \rho \sin(\phi) \sin(\theta), \quad z = \rho \cos(\phi)$$

$$\rho^2 = x^2 + y^2 + z^2$$

EXAMPLE

1 The Euclidean coordinates of the point with spherical coordinates $(3, \frac{\pi}{3}, \frac{\pi}{4})$ are $(\frac{3\sqrt{6}}{4}, \frac{3\sqrt{2}}{4}, \frac{3\sqrt{2}}{2})$.

FACT

The relationship between the spherical coordinates (ρ, θ, ϕ) and the Euclidean coordinates (x, y, z) is given by

$$x = \rho \sin(\phi) \cos(\theta), \quad y = \rho \sin(\phi) \sin(\theta), \quad z = \rho \cos(\phi)$$

$$\rho^2 = x^2 + y^2 + z^2$$

EXAMPLE

- **1** The Euclidean coordinates of the point with spherical coordinates $(3, \frac{\pi}{3}, \frac{\pi}{4})$ are $(\frac{3\sqrt{6}}{4}, \frac{3\sqrt{2}}{4}, \frac{3\sqrt{2}}{2})$.
- 2 The spherical coordinates of the point with Euclidean coordinates $(6, 6, 2\sqrt{6})$ are $(4\sqrt{6}, \frac{\pi}{4}, \frac{\pi}{3})$.

Note

The spherical wedge determined by a change of angles $\Delta\theta$ from θ and $\Delta\phi$ from ϕ and a change of radius $\Delta\rho$ from ρ is $\rho^2\sin(\phi)\Delta\rho\Delta\theta\Delta\phi$.

Note

The spherical wedge determined by a change of angles $\Delta\theta$ from θ and $\Delta\phi$ from ϕ and a change of radius $\Delta\rho$ from ρ is $\rho^2\sin(\phi)\Delta\rho\Delta\theta\Delta\phi$.

Thus if *E* is the spherical wedge

 $\{(\rho,\theta,\phi)\mid a\leq\rho\leq b; \alpha\leq\theta\leq\beta; c\leq\phi\leq d\}$, then we can derive the following formula for triple integration in spherical coordinates.

$$\int\int\int_E f(x,y,z)\ \mathrm{dV} =$$

$$\int_{c}^{d} \int_{\alpha}^{\beta} \int_{a}^{b} \rho^{2} \sin(\phi) f(\rho \sin(\phi) \cos(\theta), \rho \sin(\phi) \sin(\theta), \rho \cos(\phi)) d\rho d\theta d\phi$$

EXAMPLE

Evaluate $\int \int \int_B e^{(x^2+y^2+z^2)^{3/2}} dV$ where B is the unit ball about the origin.

EXAMPLE

Evaluate $\int \int \int_B e^{(x^2+y^2+z^2)^{3/2}} dV$ where B is the unit ball about the origin.

EXAMPLE

Find the volume of the solid that lies above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = z$.