MTHSC 206 Section 16.1 – Vector Fields

Kevin James

Kevin James MTHSC 206 Section 16.1 – Vector Fields

< ≣ >

3

1 Let $D \subseteq \mathbb{R}^2$. A vector field on D is a function F that assigns to each point $(x, y) \in D$, a vector $F(x, y) \in \mathbb{R}^2$.

- Let $D \subseteq \mathbb{R}^2$. A vector field on D is a function F that assigns to each point $(x, y) \in D$, a vector $F(x, y) \in \mathbb{R}^2$.
- 2 Let E ⊆ R³. A vector field on E is a function F that assigns to each point (x, y, z) ∈ E, a vector F(x, y, z) ∈ R³.

伺 とう ヨン うちょう

- **1** Let $D \subseteq \mathbb{R}^2$. A vector field on D is a function F that assigns to each point $(x, y) \in D$, a vector $F(x, y) \in \mathbb{R}^2$.
- **2** Let $E \subseteq \mathbb{R}^3$. A vector field on E is a function F that assigns to each point $(x, y, z) \in E$, a vector $F(x, y, z) \in \mathbb{R}^3$.

Note

We typically write 2 dimensional vector fields as F(x, y) = P(x, y)i + Q(x, y)j

< 同 > < 臣 > < 臣 >

1 Let $D \subseteq \mathbb{R}^2$. A vector field on D is a function F that assigns to each point $(x, y) \in D$, a vector $F(x, y) \in \mathbb{R}^2$.

2 Let $E \subseteq \mathbb{R}^3$. A vector field on E is a function F that assigns to each point $(x, y, z) \in E$, a vector $F(x, y, z) \in \mathbb{R}^3$.

Note

We typically write 2 dimensional vector fields as F(x,y) = P(x,y)i + Q(x,y)j and 3 dimensional vector fields as F(x,y,z) = P(x,y,z)i + Q(x,y,z)j + R(x,y,z)k, where P, Q and R are real valued functions.

・吊り ・ヨト ・ヨト

1 Let $D \subseteq \mathbb{R}^2$. A vector field on D is a function F that assigns to each point $(x, y) \in D$, a vector $F(x, y) \in \mathbb{R}^2$.

2 Let $E \subseteq \mathbb{R}^3$. A vector field on E is a function F that assigns to each point $(x, y, z) \in E$, a vector $F(x, y, z) \in \mathbb{R}^3$.

Note

We typically write 2 dimensional vector fields as F(x,y) = P(x,y)i + Q(x,y)j and 3 dimensional vector fields as F(x,y,z) = P(x,y,z)i + Q(x,y,z)j + R(x,y,z)k, where P, Q and R are real valued functions.

EXAMPLE

Plot F(x, y) = (-y, x) = -yi + xj. Note that F assigns to each vector an orthogonal vector.

イロン イヨン イヨン イヨン

- **1** Suppose that f(x, y) is a differentiable function on \mathbb{R}^2 . Then ∇f is a vector field on \mathbb{R}^2 called a gradient field.
- Suppose that g(x, y, z) is a differentiable function on R³. Then ∇g is a vector field on R³ called a gradient field.

- **1** Suppose that f(x, y) is a differentiable function on \mathbb{R}^2 . Then ∇f is a vector field on \mathbb{R}^2 called a gradient field.
- 2 Suppose that g(x, y, z) is a differentiable function on ℝ³. Then ∇g is a vector field on ℝ³ called a gradient field.

EXAMPLE

Consider the function $f(x, y) = x^2 + y^2$. Plot the gradient field for f and several contours of f.

・ 同 ト ・ ヨ ト ・ ヨ ト

A vector field F is called a <u>conservative field</u> if it is the gradient field for some function f.

イロン イヨン イヨン イヨン

æ

A vector field F is called a <u>conservative field</u> if it is the gradient field for some function f. In the case that $F = \nabla f$, we say that f is a <u>potential function</u> for F.

イロン イヨン イヨン イヨン