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Line Integrals

We wish to develop the notion of integrating a real valued function
f (x , y) along a smooth curve.
Suppose that C is a smooth curve which is parametrized by
r(t) = [x(t), y(t)] as a ≤ t ≤ b.
For n ≥ 1, we define ∆t = b−a

n , ti = a + i∆t and
si = r(ti ) = [x(ti ), y(ti )] = [xi , yi ].
Also, we define ∆si to be the length of the arc form r(ti−1) to
r(ti ).

Definition

We define the line integral of f along C by∫
C

f (x , y) ds = lim
n→∞

n∑
i=1

f (xi−1, yi−1)∆si
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Note

We note that ∆si ≈ |si − si−1| =
√

(xi − xi−1)2 + (yi − yi−1)2.
Since xi − xi−1 = x(ti−1 + ∆t)− x(ti−1) ≈ x ′(ti−1)∆t and

similarly for yi − yi−1, ∆si ≈
(√

x ′(ti−1)2 + y ′(ti−1)2
)

∆t.

Thus, one can prove∫
C

f (x , y) ds = lim
n→∞

n∑
i=1

f (xi−1, yi−1)

(√
x ′(ti−1)2 + y ′(ti−1)2

)
∆t

Fact∫
C f (x , y) ds =

∫ b
a f (x(t), y(t))

√
(x ′(t))2 + (y ′(t))2 dt.
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Example

Evaluate
∫
C (2 + x2y) ds where C is the upper half of the unit

circle.

Example

Evaluate
∫
C (x2 + y2) ds along the straight line from (a, 0) to

(b, 0).
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Definition

If C is a piecewise smooth curve, that is it is the union of smooth
curves C1,C2, . . . ,Cn where the initial point of Ci is the end point
of Ci−1, then we define∫

C
f (x , y) ds =

n∑
i=1

∫
Ci

f (x , y) ds.

Example

Integrate f (x , y) = 2x along the piecewise smooth curve C given
by first traveling from (0, 0) to (1, 1) along the parabola y = x2

and then traveling along the line segment from (1, 1) to (1, 2).

Example

Suppose that a wire lies along the upper half of the unit circle and
has linear density at any point (x , y) proportional to its distance
from the line y = 1. Compute the mass and center of mass of the
wire.
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Definition

Two other line integrals which occur naturally in many settings are
the line integrals of f (x , y) with respect to x and the line integral
of f (x , y) with respect to y . These are defined as∫

C
f (x , y) dx =

∫ b

a
f (x(t), y(t))x ′(t) dt and∫

C
f (x , y) dy =

∫ b

a
f (x(t), y(t))y ′(t) dt.

Notation

Since the line integrals of functions with respect to x and y
frequently appear together, we often write∫

C
P(x , y) dx +

∫
C

Q(x , y) dy =

∫
C

P(x , y) dx + Q(x , y) dy.
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Example

Evaluate
∫
C y2 dx + x dy first where C is the line segment from

(−5,−3) to (0, 2) and again where C is the arc from (−5,−3) to
(0, 2) along the parabola x = 4− y2. Are the answers the same?

Note

If C denotes a curve segment parametrized by r(t), a ≤ t ≤ b,
then we denote by −C the same curve with opposite orientation,
that is −C is parametrized by s(t) = r((b − t) + a).
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Fact ∫
−C

f (x , y) dx = −
∫
C

f (x , y) dx,∫
−C

f (x , y) dy = −
∫
C

f (x , y) dy∫
−C

f (x , y) ds =

∫
C

f (x , y) ds.

This is because ∆x and ∆y can be negative when orientation is
reversed as in single variable calculus. However, ∆s was defined to
be an arc length which is positive. Thus the line integral with
respect to arc length is independent to orientation.
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Line Integrals in Space

Definition

If f (x , y , z) is a function of 3 variables and C is a smooth curve in
R3 parametrized by r(t) = [x(t), y(t), z(t)] for a ≤ t ≤ b, then we
define the line integral of f with respect to arc length as∫
C

f (x , y , z) ds = lim
n→∞

n∑
i=1

f (xi−1, yi−1, zi−1)∆si

=

∫ b

a
f (x(t), y(t), z(t))

√
x ′(t)2 + y ′(t)2 + z ′(t)2 dt

=

∫ b

a
f (r(t))|r ′(t)| dt.

Example

Evaluate
∫
C y sin(z) ds where C is the curve parametrized by

r(t) = [cos(t), sin(t), t] for 0 ≤ t ≤ 2π.
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Line Integrals of Vector Fields

Note

Suppose that F is a continuous force field and that a particle is
moved by F through a smooth curve C parametrized by r(t),
a ≤ t ≤ b. Then the work done by F is given by

W =

∫
C

F · T ds,

where T (t) is the unit tangent vector of C at r(t).
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Definition

Let F be a continuous vector field defined on a smooth curve C
parametrized by r(t) for a ≤ t ≤ b. Let T (t) denote the unit
tangent vector of r(t). Then the line integral of F along C is∫

C
F · dr =

∫ b

a
F (r(t)) · r ′(t) dt =

∫
C

F · T ds.

Example

Evaluate
∫
C F · dr where F (x , y , z) = [xy , yz , zx ] and C is

parametrized by r(t) = [t, t2, t3] for 0 ≤ t ≤ 1.
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Note

Suppose that F (x , y , z) = Pi + Qj + Rk is a vector field and that
C is parametrized by r(t) = [x(t), y(t), z(t)]. Then∫

C
F · dr =

∫
C

P dx + Q dy + R dz.
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