MTHSC 206 Section 16.9 – The Divergence Theorem

Kevin James

Kevin James MTHSC 206 Section 16.9 – The Divergence Theorem

・ 御 と ・ 臣 と ・ を 臣 と

æ

Definition

We say that a solid region in \mathbb{R}^3 is a simple solid region if it is of type 1, type 2 and type 3 (see 16.6).

The Divergence Theorem

Let *E* be a simple solid region and let $S = \partial E$ be the boundary of *E* with positive orientation. Let F = [P, Q, R] be a vector field whose components have continuous partials on an open region containing *E*. Then

$$\int \int_{S} F \cdot d\mathbb{S} = \int \int \int_{E} \operatorname{div}(F) \, \mathrm{dV}$$

- 4 同 ト 4 臣 ト 4 臣 ト

EXAMPLE

Find the flux of the vector field F(x, y, z) = [z, y, x] over the unit sphere $x^2 + y^2 + z^2 = 1$.

EXAMPLE

Evalueate $\int \int_S F \cdot d\mathbb{S}$, where $F(x, y, z) = [xy, y^2 + e^{xz^2}, \sin(xy)]$ and S is the surface of the region E bounded by the parabolic cylinder $z = 1 - x^2$, the xy-plane, the xzplane and the plane y + z = 2.

Note

We can apply the divergence theorem to other regions as well.

- If $E = E_1 \cup E_2 \cup \cdots \cup E_k$ is the union of a finite number of simple solids, then the divergence theorem will still hold for E.
- 2 Suppose that S_1 is a closed surface lying inside the closed surface S_2 and the E is the region between the two. Then,

$$\int \int \int_{E} \operatorname{div}(F) \, \mathrm{dV} = \int \int_{S_2} F \cdot \, \mathrm{dS} - \int \int_{S_1} F \cdot \, \mathrm{dS}$$

- 4 同 6 4 日 6 4 日 6