MTHSC 206 Section 13.3 –Dot Products AND Projections

Kevin James

DEFINITION

Suppose that $a=(a_1,a_2,a_3)$ and $b=(b_1,b_2,b_3)$. Then we define the dot product $a \cdot b$ of a and b by

$$a \cdot b = a_1b_1 + a_2b_2 + a_3b_3.$$

EXAMPLE

$$(1,2,-1)\cdot(2,3,-2)=(1)(2)+(2)(3)+(-1)(-2)=2+6+2=10$$

Properties of the Dot Product

Suppose that $a, b, c \in \mathbb{R}^3$ and $d \in \mathbb{R}$.

- $\mathbf{1} \ a \cdot a = |a|^2$.
- $\mathbf{2} \ a \cdot b = b \cdot a$.

- **6** $0 \cdot a = 0$.

THE GEOMETRY OF DOT PRODUCTS

THEOREM

Suppose that a and b are vectors in \mathbb{R}^2 or \mathbb{R}^3 . Then,

$$a \cdot b = |a||b|\cos(\theta),$$

where θ is the angle between a and b.

COROLLARY

Suppose that a, b and θ are as above. Then

$$\cos(\theta) = \frac{a \cdot b}{|a||b|}.$$

EXAMPLE

The angle between (1,1,1) and (1,1,0) is $\theta=\arccos(\frac{2}{\sqrt{6}})$.

FACT

Two vectors are perpendicular or orthogonal if and only if $a \cdot b = 0$.

EXAMPLE

i, j and k are pairwise orthogonal.

DIRECTION ANGLES

Suppose that $a \in \mathbb{R}^3$ and that α, β and γ are the angles between a and the x-, y- and z-axes (respectively). Then,

$$\cos(\alpha) = \frac{a_1}{|a|}, \quad \cos(\beta) = \frac{a_2}{|a|} \quad \text{and} \quad \cos(\gamma) = \frac{a_3}{|a|}.$$

Note

Suppose that $a \in \mathbb{R}^3$ is a vector and that α, β and γ are its position angles. Then,

- **1** $\cos(\alpha)^2 + \cos(\beta)^2 + \cos(\gamma)^2 = 1$.
- 2 $a = (|a|\cos(\alpha), |a|\cos(\beta), |a|\cos(\gamma)) = |a|(\cos(\alpha), \cos(\beta), \cos(\gamma)).$
- 3 $\frac{1}{|a|}a = (\cos(\alpha), \cos(\beta), \cos(\gamma)).$

DEFINITION

Suppose that $a = \vec{PQ}$ and $b = \vec{PR}$ ($Q \neq R$). Let \mathcal{L} be a line which is perpendicular to the line containing a and passes through R. Let S be the intersection point of \mathcal{L} with the line containing a. Then the vector \vec{PS} is the vector projection of b onto a and is denoted by $\text{Proj}_a(b)$.

DEFINITION

The scalar projection of b onto a (or component of b along a) is defined to be the signed magnitude of $Proj_a(b)$ and is denoted by $comp_a(b)$.

Note

Suppose that a and b are vectors and that θ is the angle between them.

- $2 a \cdot b = |a||b|\cos(\theta).$
- $\mathbf{3} \operatorname{comp}_{a}(b) = \frac{a \cdot b}{|a|}.$

EXAMPLE

Let a = (1, 1, 0) and b = (1, 1, 1). Compute the vector and scalar projections of b onto a.

APPLICATION

Suppose that a constant force vector F acts on an object moving it from P to Q.

Then the work done is component of F acting in the direction of $D = \overrightarrow{PQ}$ multiplied by the distance the object has moved, namely |PQ|.

So, if θ is the angle between the force vector F and the displacement vector D, then

$$W = (|F|\cos(\theta))|D| = |F||D|\cos(\theta) = F \cdot D.$$