MTHSC 206 Section 13.5 –Equations of Lines and Planes

Kevin James

Kevin James MTHSC 206 Section 13.5 – Equations of Lines and Planes

DEFINITION

A line in \mathbb{R}^3 can be described by a point and a direction vector. Given the point r_0 and the direction vector v. Any point r on the line through r_0 and parallel to v satisfies $r = r_0 + tv$ for some $t \in \mathbb{R}$.

DEFINITION

A line in \mathbb{R}^3 can be described by a point and a direction vector. Given the point r_0 and the direction vector v. Any point r on the line through r_0 and parallel to v satisfies $r = r_0 + tv$ for some $t \in \mathbb{R}$.

DEFINITION

If we let $r_0 = (x_0, y_0, z_0)$ and v = (a, b, c), then the line described above could also be described by the parametric equations

$$x = x_0 + at$$
, $y = y_0 + bt$ and $z = z_0 + tc$.

(4月) イヨト イヨト

DEFINITION

If the coordinates of the direction vector are all non zero, then we have a third description of the line given by solving each of the parametric equations for t and equating, namely

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

If the coordinates of the direction vector are all non zero, then we have a third description of the line given by solving each of the parametric equations for t and equating, namely

$$\frac{x-x_0}{a}=\frac{y-y_0}{b}=\frac{z-z_0}{c}.$$

EXERCISE

Give vector, parametric and symmetric equations for the line passing though the points A = (1, 1, 1) and B = (0, -1, 2). At what point does this line idefnrsect the *xy*-plane?

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

A plane in \mathbb{R}^3 can be described by a point r_0 in the plane along with a normal vector n which is orthogonal to all vectors in the plane. Given this information, we see that r is in the plane if and only if $r - r_0$ is orthogonal to n, that is

$$n \cdot (r - r_0) = 0$$
, or
 $n \cdot r = n \cdot r_0$.

Either of these equations is called the vector equation of the plane.

Definition

A plane in \mathbb{R}^3 can be described by a point r_0 in the plane along with a normal vector n which is orthogonal to all vectors in the plane. Given this information, we see that r is in the plane if and only if $r - r_0$ is orthogonal to n, that is

$$n \cdot (r - r_0) = 0$$
, or
 $n \cdot r = n \cdot r_0$.

Either of these equations is called the vector equation of the plane.

Note

Letting n = (a, b, c), r = (x, y, z) and $r_0 = (x_0, y_0, z_0)$, we obtain the scalar equation of the plane through the point $r_0 = (x_0, y_0, z_0)$ with normal vector n = (a, b, c), namely

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0.$$

イロト イポト イヨト イヨト

э

Note

The last equation can be rewritten in the form

$$ax + by + cz + d = 0.$$

This is called a linear equation of the plane.

- 4 回 2 - 4 □ 2 - 4 □

Note

The last equation can be rewritten in the form

$$ax + by + cz + d = 0.$$

This is called a linear equation of the plane.

EXERCISE

Find an equation for the plane containing the points (1, 0, 0), (0, 1, 0) and (0, 0, 1).

- - 4 回 ト - 4 回 ト

- **1** Two planes are parallel if and only if their normal vectors are parallel.
- 2 The angle between two intersecting planes is equal to the angle between their normal vectors.

・ 回 と ・ ヨ と ・ ヨ と …

- **1** Two planes are parallel if and only if their normal vectors are parallel.
- 2 The angle between two intersecting planes is equal to the angle between their normal vectors.

EXERCISE

Find the angle between the planes x + y + z = 0 and x + 2y + 3z = 0. Describe their intersection.

・ 回 ト ・ ヨ ト ・ ヨ ト

The distance from the point $P = (x_1, y_1, z_1)$ to the plane ax + by + cz + d = 0 is given by

$$D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

・ 回 ト ・ ヨ ト ・ ヨ ト

3

The distance from the point $P = (x_1, y_1, z_1)$ to the plane ax + by + cz + d = 0 is given by

$$D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Proof.

Note that a normal vector to the plane is n = (a, b, c).

< ロ > < 回 > < 回 > < 回 > < 回 > <

3

The distance from the point $P = (x_1, y_1, z_1)$ to the plane ax + by + cz + d = 0 is given by

$$D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Proof.

Note that a normal vector to the plane is n = (a, b, c). Let P_0 be any point in the plane and let $b = P_0 P =$

・ロン ・回 と ・ ヨ と ・ ヨ と

The distance from the point $P = (x_1, y_1, z_1)$ to the plane ax + by + cz + d = 0 is given by

$$D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Proof.

Note that a normal vector to the plane is n = (a, b, c). Let P_0 be any point in the plane and let $b = P_0 P = (x_1 - x_0, y_1 - y_0, z_1 - z_0).$

(日) (同) (E) (E) (E)

The distance from the point $P = (x_1, y_1, z_1)$ to the plane ax + by + cz + d = 0 is given by

$$D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Proof.

Note that a normal vector to the plane is n = (a, b, c). Let P_0 be any point in the plane and let $b = P_0P = (x_1 - x_0, y_1 - y_0, z_1 - z_0)$. Then, $D = |\text{comp}_n(b)| =$

(日) (同) (E) (E) (E)

The distance from the point $P = (x_1, y_1, z_1)$ to the plane ax + by + cz + d = 0 is given by

$$D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Proof.

Note that a normal vector to the plane is n = (a, b, c). Let P_0 be any point in the plane and let $b = P_0 P = (x_1 - x_0, y_1 - y_0, z_1 - z_0)$. Then, $D = |\text{comp}_n(b)| = \frac{|n \cdot b|}{|n|} =$

イロト イポト イラト イラト 一日

The distance from the point $P = (x_1, y_1, z_1)$ to the plane ax + by + cz + d = 0 is given by

$$D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Proof.

Note that a normal vector to the plane is n = (a, b, c). Let P_0 be any point in the plane and let $b = P_0 P = (x_1 - x_0, y_1 - y_0, z_1 - z_0)$. Then, $D = |\text{comp}_n(b)| = \frac{|n \cdot b|}{|n|} = \frac{|a(x_1 - x_0) + b(y_1 - y_0) + c(z_1 - z_0)|}{\sqrt{a^2 + b^2 + c^2}}$.

イロト イポト イラト イラト 一日

The distance from the point $P = (x_1, y_1, z_1)$ to the plane ax + by + cz + d = 0 is given by

$$D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Proof.

Note that a normal vector to the plane is n = (a, b, c). Let P_0 be any point in the plane and let $b = P_0 P = (x_1 - x_0, y_1 - y_0, z_1 - z_0)$. Then, $D = |\operatorname{comp}_n(b)| = \frac{|n \cdot b|}{|n|} = \frac{|a(x_1 - x_0) + b(y_1 - y_0) + c(z_1 - z_0)|}{\sqrt{a^2 + b^2 + c^2}}$. Now note that $-ax_0 - by_0 - cz_0 = d$, since P_0 is in the plane. \Box

<ロ> (四) (四) (注) (注) (注) (三)