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Definition

A line in R3 can be described by a point and a direction vector.
Given the point r0 and the direction vector v . Any point r on the
line through r0 and parallel to v satisfies r = r0 + tv for some
t ∈ R.

Definition

If we let r0 = (x0, y0, z0) and v = (a, b, c), then the line described
above could also be described by the parametric equations

x = x0 + at, y = y0 + bt and z = z0 + tc .
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Definition

If the coordinates of the direction vector are all non zero, then we
have a third description of the line given by solving each of the
parametric equations for t and equating, namely

x − x0
a

=
y − y0

b
=

z − z0
c

.

Exercise

Give vector, parametric and symmetric equations for the line
passing though the points A = (1, 1, 1) and B = (0,−1, 2). At
what point does this line idefnrsect the xy -plane?
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Definition

A plane in R3 can be described by a point r0 in the plane along
with a normal vector n which is orthogonal to all vectors in the
plane. Given this information, we see that r is in the plane if and
only if r − r0 is orthogonal to n, that is

n · (r − r0) = 0, or

n · r = n · r0.

Either of these equations is called the vector equation of the plane.

Note

Letting n = (a, b, c), r = (x , y , z) and r0 = (x0, y0, z0), we obtain
the scalar equation of the plane through the point r0 = (x0, y0, z0)
with normal vector n = (a, b, c), namely

a(x − x0) + b(y − y0) + c(z − z0) = 0.
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Note

The last equation can be rewritten in the form

ax + by + cz + d = 0.

This is called a linear equation of the plane.

Exercise

Find an equation for the plane containing the points (1, 0, 0),
(0, 1, 0) and (0, 0, 1).
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Fact

1 Two planes are parallel if and only if their normal vectors are
parallel.

2 The angle between two intersecting planes is equal to the
angle between their normal vectors.

Exercise

Find the angle between the planes x + y + z = 0 and
x + 2y + 3z = 0. Describe their intersection.
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Fact

The distance from the point P = (x1, y1, z1) to the plane
ax + by + cz + d = 0 is given by

D =
|ax1 + by1 + cz1 + d |√

a2 + b2 + c2
.

Proof.

Note that a normal vector to the plane is n = (a, b, c).
Let P0 be any point in the plane and let
b = ~P0P = (x1 − x0, y1 − y0, z1 − z0).

Then, D = |compn(b)| = |n·b|
|n| = |a(x1−x0)+b(y1−y0)+c(z1−z0)|√

a2+b2+c2
.

Now note that −ax0 − by0 − cz0 = d , since P0 is in the plane.
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