MTHSC 206 SECTION 15.6 – DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR

Kevin James

We define the <u>directional derivative</u> of the function f(x,y) at the point (x_0,y_0) in the direction of the unit vector u=(a,b) (u should be thought of as a vector in the xy-plane) as

$$D_u f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ah, y_0 + by) - f(x_0, y_0)}{h}.$$

We define the <u>directional derivative</u> of the function f(x,y) at the point (x_0,y_0) in the direction of the unit vector u=(a,b) (u should be thought of as a vector in the xy-plane) as

$$D_u f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ah, y_0 + by) - f(x_0, y_0)}{h}.$$

Theorem

If f(x, y) is differentiable, then

$$D_u f(x, y) = f_x(x, y) a + f_v(x, y) b.$$

Define $g(h) = f(x_0 + ah, y_0 + bh)$.

Define $g(h) = f(x_0 + ah, y_0 + bh)$.

Then, we have that

$$g'(0) = \lim_{h\to 0} \frac{g(h) - g(0)}{h} =$$

Define $g(h) = f(x_0 + ah, y_0 + bh)$.

Then, we have that

$$g'(0) = \lim_{h \to 0} \frac{g(h) - g(0)}{h} = \lim_{h \to 0} \frac{f(x_0 + ah, y_0 + bh) - f(x_0, y_0)}{h}$$

Define $g(h) = f(x_0 + ah, y_0 + bh)$.

Then, we have that

$$g'(0) = \lim_{h \to 0} \frac{g(h) - g(0)}{h} = \lim_{h \to 0} \frac{f(x_0 + ah, y_0 + bh) - f(x_0, y_0)}{h}$$
$$= D_u f(x_0, y_0).$$

Define $g(h) = f(x_0 + ah, y_0 + bh)$.

Then, we have that

$$g'(0) = \lim_{h \to 0} \frac{g(h) - g(0)}{h} = \lim_{h \to 0} \frac{f(x_0 + ah, y_0 + bh) - f(x_0, y_0)}{h}$$
$$= D_u f(x_0, y_0).$$

We can also write g(h) = f(x, y) where $x = x_0 + ah$ and $y = y_0 + bh$.

Define $g(h) = f(x_0 + ah, y_0 + bh)$.

Then, we have that

$$g'(0) = \lim_{h \to 0} \frac{g(h) - g(0)}{h} = \lim_{h \to 0} \frac{f(x_0 + ah, y_0 + bh) - f(x_0, y_0)}{h}$$
$$= D_u f(x_0, y_0).$$

We can also write g(h) = f(x, y) where $x = x_0 + ah$ and $y = y_0 + bh$.

Applying the chain rule, we have,

$$g'(h) = f_x(x, y)a + f_y(x, y)b.$$

Define $g(h) = f(x_0 + ah, y_0 + bh)$.

Then, we have that

$$g'(0) = \lim_{h \to 0} \frac{g(h) - g(0)}{h} = \lim_{h \to 0} \frac{f(x_0 + ah, y_0 + bh) - f(x_0, y_0)}{h}$$
$$= D_u f(x_0, y_0).$$

We can also write g(h) = f(x, y) where $x = x_0 + ah$ and $y = y_0 + bh$.

Applying the chain rule, we have,

$$g'(h) = f_x(x, y)a + f_y(x, y)b.$$

Thus,

$$D_u f(x_0, y_0) = g'(0) = f_x(x_0, y_0)a + f_y(x_0, y_0)b.$$

If the vector u is at an angle θ with the x-axis then we can write $u = (\cos(\theta), \sin(\theta))$. Thus

$$D_u f(x, y) = f_x(x, y) \cos(\theta) + f_y(x, y) \sin(\theta).$$

If the vector u is at an angle θ with the x-axis then we can write $u = (\cos(\theta), \sin(\theta))$. Thus

$$D_u f(x, y) = f_x(x, y) \cos(\theta) + f_y(x, y) \sin(\theta).$$

EXAMPLE

Find the directional derivative $D_u f(x,y)$ of the function $f(x,y)=x^2+xy+y^2$ in the direction of the unit vector which is at an angle of $\theta=\frac{\pi}{3}$ to the x-axis.

The directional derivative of f in the direction of u can be written as

$$D_u f(x,y) = (f_x(x,y), f_y(x,y)) \cdot u.$$

The directional derivative of f in the direction of u can be written as

$$D_u f(x,y) = (f_x(x,y), f_y(x,y)) \cdot u.$$

DEFINITION

We define the gradient of a function f(x, y) as

$$\nabla f = (f_x(x,y), f_y(x,y)) = f_x(x,y)i + f_y(x,y)j.$$

The directional derivative of f in the direction of u can be written as

$$D_u f(x,y) = (f_x(x,y), f_y(x,y)) \cdot u.$$

DEFINITION

We define the gradient of a function f(x, y) as

$$\nabla f = (f_x(x,y), f_y(x,y)) = f_x(x,y)i + f_y(x,y)j.$$

FACT

If u is a unit vector and f(x, y) is a function of 2 variables then

$$D_{u}f(x,y) = \nabla f \cdot u.$$

EXAMPLE

Consider the function $f(x,y) = e^{xy}$. Compute the gradient of f. Compute the directional derivative of f in the direction of $u = (\sqrt{3}/2, 1/2)$.

FUNCTIONS OF 3 VARIABLES

<u>De</u>finition

The <u>directional derivative</u> of f(x, y, z) at (x_0, y_0, z_0) in the direction of the unit vector u = (a, b, c) is

$$D_u f(x_0, y_0, z_0) = \lim_{h \to 0} \frac{f(x_0 + ah, y_0 + bh, z_0 + ch) - f(x_0, y_0, z_0)}{h}.$$

if this limit exists.

FUNCTIONS OF 3 VARIABLES

Definition

The <u>directional derivative</u> of f(x, y, z) at (x_0, y_0, z_0) in the direction of the unit vector u = (a, b, c) is

$$D_u f(x_0, y_0, z_0) = \lim_{h \to 0} \frac{f(x_0 + ah, y_0 + bh, z_0 + ch) - f(x_0, y_0, z_0)}{h}$$

if this limit exists.

FACT

If f(x, y, z) is differentiable then

$$D_u f(x, y, z) = f_x(x, y, z)a + f_y(x, y, z)b + f_z(x, y, z)c.$$

We define the gradient of f(x, y, z) as

$$\nabla f = (f_x, f_y, f_z).$$

We define the gradient of f(x, y, z) as

$$\nabla f = (f_x, f_y, f_z).$$

FACT

$$D_u f(x, y, z) = \nabla f(x, y, z) \cdot u$$

We define the gradient of f(x, y, z) as

$$\nabla f = (f_{\mathsf{x}}, f_{\mathsf{y}}, f_{\mathsf{z}}).$$

FACT

$$D_u f(x, y, z) = \nabla f(x, y, z) \cdot u$$

Example

Suppose that $f(x,y,z)=\sin(xy)e^z$. Compute ∇f . What is the directional derivative at $(\pi,1/2,0)$ in the direction $(\sqrt{3}/3,\sqrt{3}/3,\sqrt{3}/3)$. Can you find the direction which maximizes $D_u f$ at this point?

THEOREM

Suppose that f is a differentiable function of two or three variables. The maximal value of the directional derivative $D_u f(\vec{x})$ at the point \vec{x} is $|\nabla f|$ and it occurs when $u = \frac{1}{|\nabla f|} \nabla f$.

THEOREM

Suppose that f is a differentiable function of two or three variables. The maximal value of the directional derivative $D_u f(\vec{x})$ at the point \vec{x} is $|\nabla f|$ and it occurs when $u = \frac{1}{|\nabla f|} \nabla f$.

EXAMPLE

Consider the function $f(x,y,z)=e^{xyz}$. What is the directional derivative at the point (0,1,0) in the direction of $\overline{((0,1,0),(1,1,1))}$. What is the maximum value of the directional derivative at this point? In which direction does it occur?

THEOREM

Suppose that f is a differentiable function of two or three variables. The maximal value of the directional derivative $D_u f(\vec{x})$ at the point \vec{x} is $|\nabla f|$ and it occurs when $u = \frac{1}{|\nabla f|} \nabla f$.

EXAMPLE

Consider the function $f(x,y,z)=e^{xyz}$. What is the directional derivative at the point (0,1,0) in the direction of $\overline{((0,1,0),(1,1,1))}$. What is the maximum value of the directional derivative at this point? In which direction does it occur?

EXAMPLE

Again consider the function $f(x, y, z) = e^{xyz}$. What is the directional derivative at the point (1, 1, 1) in the direction of $\overline{((1, 1, 1), (2, 3, 1))}$. What is the maximum value of the directional derivative at this point? In which direction does it occur?

Suppose that S is the level surface of F(x, y, z) given by F(x, y, z) = k and $P = (x_0, y_0, z_0)$ is a point on S.

Suppose that S is the level surface of F(x, y, z) given by F(x, y, z) = k and $P = (x_0, y_0, z_0)$ is a point on S. Let C be any curve that lies on S and passes through P.

Suppose that S is the level surface of F(x, y, z) given by F(x, y, z) = k and $P = (x_0, y_0, z_0)$ is a point on S. Let C be any curve that lies on S and passes through P. Then C can be parametrized by r(t) = (x(t), y(t), z(t)).

Suppose that S is the level surface of F(x, y, z) given by F(x, y, z) = k and $P = (x_0, y_0, z_0)$ is a point on S. Let C be any curve that lies on S and passes through P. Then C can be parametrized by r(t) = (x(t), y(t), z(t)). Suppose that $r(t_0) = P$.

Suppose that S is the level surface of F(x,y,z) given by F(x,y,z)=k and $P=(x_0,y_0,z_0)$ is a point on S. Let C be any curve that lies on S and passes through P. Then C can be parametrized by r(t)=(x(t),y(t),z(t)). Suppose that $r(t_0)=P$. Note that F(x(t),y(t),z(t))=k because C lies on S.

Suppose that S is the level surface of F(x, y, z) given by F(x, y, z) = k and $P = (x_0, y_0, z_0)$ is a point on S. Let C be any curve that lies on S and passes through P.

Then C can be parametrized by r(t) = (x(t), y(t), z(t)).

Suppose that $r(t_0) = P$.

Note that F(x(t), y(t), z(t)) = k because C lies on S.

Supposing all functions to be differentiable, we can use the chain rule to obtian,

$$0 = F_x x'(t) + F_y y'(t) + F_z z'(t) =$$

Suppose that S is the level surface of F(x, y, z) given by F(x, y, z) = k and $P = (x_0, y_0, z_0)$ is a point on S. Let C be any curve that lies on S and passes through P.

Then C can be parametrized by r(t) = (x(t), y(t), z(t)).

Suppose that $r(t_0) = P$.

Note that F(x(t), y(t), z(t)) = k because C lies on S.

Supposing all functions to be differentiable, we can use the chain rule to obtian,

$$0 = F_{x}x'(t) + F_{y}y'(t) + F_{z}z'(t) = \nabla F \cdot r'(t).$$

Suppose that S is the level surface of F(x, y, z) given by F(x, y, z) = k and $P = (x_0, y_0, z_0)$ is a point on S. Let C be any curve that lies on S and passes through P.

Then C can be parametrized by r(t) = (x(t), y(t), z(t)).

Suppose that $r(t_0) = P$.

Note that F(x(t), y(t), z(t)) = k because C lies on S.

Supposing all functions to be differentiable, we can use the chain rule to obtian,

$$0 = F_{x}x'(t) + F_{y}y'(t) + F_{z}z'(t) = \nabla F \cdot r'(t).$$

That is, $\nabla F(P)$ is orthogonal to the tangent vector at P of any curve along S passing through P.

We define the tangent plane to the level surface F(x, y, z) = k at $P = (x_0, y_0, \overline{z_0})$ as the plane that passes through P and has normal vector $\nabla F(x_0, y_0, z_0)$. This plane has equation

$$F_x(x_0, y_0, z_0)(x-x_0)+F_y(x_0, y_0, z_0)(y-y_0)+F_z(x_0, y_0, z_0)(z-z_0)=0.$$

or

$$\nabla F(x_0, y_0, z_0) \cdot (\overrightarrow{P, (x, y, z)}) = 0$$

We define the <u>normal line</u> to the level surface F(x, y, z) = k at P to be the line passing through P and orthogonal to the tangent plane,

We define the <u>normal line</u> to the level surface F(x, y, z) = k at P to be the line passing through P and orthogonal to the tangent plane, that is the line through P parallel to the normal vector for the tangent plane which is $\nabla F(P)$.

We define the <u>normal line</u> to the level surface F(x, y, z) = k at P to be the line passing through P and orthogonal to the tangent plane, that is the line through P parallel to the normal vector for the tangent plane which is $\nabla F(P)$. This line has symmetric equations

$$\frac{x-x_0}{F_x(x_0,y_0,z_0)} = \frac{y-y_0}{F_y(x_0,y_0,z_0)} = \frac{z-z_0}{F_z(x_0,y_0,z_0)}.$$

We can think of the graph z = f(x, y) of f(x, y) as the level surface F(x, y, z) = 0 where F(x, y, z) = f(x, y) - z.

We can think of the graph z = f(x,y) of f(x,y) as the level surface F(x,y,z) = 0 where F(x,y,z) = f(x,y) - z. In this case, $\nabla F = (f_x, f_y, -1)$

We can think of the graph z = f(x,y) of f(x,y) as the level surface F(x,y,z) = 0 where F(x,y,z) = f(x,y) - z. In this case, $\nabla F = (f_x, f_y, -1)$

So the tangent plane to the graph of f as a level surface at P would have equation

$$f_x(x_0, y_0, z_0)(x - x_0) + f_y(x_0, y_0, z_0)(y - y_0) - (z - z_0) = 0.$$

which is consistent with our previous definition of tangent plane.

We can think of the graph z = f(x,y) of f(x,y) as the level surface F(x,y,z) = 0 where F(x,y,z) = f(x,y) - z. In this case, $\nabla F = (f_x, f_y, -1)$

So the tangent plane to the graph of f as a level surface at P would have equation

$$f_x(x_0, y_0, z_0)(x - x_0) + f_y(x_0, y_0, z_0)(y - y_0) - (z - z_0) = 0.$$

which is consistent with our previous definition of tangent plane. The normal line has equation

$$\frac{x-x_0}{f_x(x_0,y_0,z_0)}=\frac{y-y_0}{f_y(x_0,y_0,z_0)}=-(z-z_0).$$

EXAMPLE

Find the equations of the tangent plane and normal line at the point (1,1,2) to the ellipsoid $\frac{x^2}{9} + \frac{y^2}{4} + z^2 = 5$.