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Definition

We define the directional derivative of the function f (x , y) at the
point (x0, y0) in the direction of the unit vector u = (a, b) (u
should be thought of as a vector in the xy -plane) as

Duf (x0, y0) = lim
h→0

f (x0 + ah, y0 + by)− f (x0, y0)

h
.

Theorem

If f (x , y) is differentiable, then

Duf (x , y) = fx(x , y)a + fy (x , y)b.
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Proof.

Define g(h) = f (x0 + ah, y0 + bh).

Then, we have that

g ′(0) = lim
h→0

g(h)− g(0)

h
= lim

h→0

f (x0 + ah, y0 + bh)− f (x0, y0)

h
= Duf (x0, y0).

We can also write g(h) = f (x , y) where x = x0 + ah and
y = y0 + bh.
Applying the chain rule, we have,

g ′(h) = fx(x , y)a + fy (x , y)b.

Thus,

Duf (x0, y0) = g ′(0) = fx(x0, y0)a + fy (x0, y0)b.
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Note

If the vector u is at an angle θ with the x-axis then we can write
u = (cos(θ), sin(θ)). Thus

Duf (x , y) = fx(x , y) cos(θ) + fy (x , y) sin(θ).

Example

Find the directional derivative Duf (x , y) of the function
f (x , y) = x2 + xy + y2 in the direction of the unit vector which is
at an angle of θ = π

3 to the x-axis.
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Note

The directional derivative of f in the direction of u can be written
as

Duf (x , y) = (fx(x , y), fy (x , y)) · u.

Definition

We define the gradient of a function f (x , y) as

∇f = (fx(x , y), fy (x , y)) = fx(x , y)i + fy (x , y)j .

Fact

If u is a unit vector and f (x , y) is a function of 2 variables then

Duf (x , y) = ∇f · u.

Kevin James MTHSC 206 Section 15.6 – Directional Derivatives and the Gradient Vector



Note

The directional derivative of f in the direction of u can be written
as

Duf (x , y) = (fx(x , y), fy (x , y)) · u.

Definition

We define the gradient of a function f (x , y) as

∇f = (fx(x , y), fy (x , y)) = fx(x , y)i + fy (x , y)j .

Fact

If u is a unit vector and f (x , y) is a function of 2 variables then

Duf (x , y) = ∇f · u.

Kevin James MTHSC 206 Section 15.6 – Directional Derivatives and the Gradient Vector



Note

The directional derivative of f in the direction of u can be written
as

Duf (x , y) = (fx(x , y), fy (x , y)) · u.

Definition

We define the gradient of a function f (x , y) as

∇f = (fx(x , y), fy (x , y)) = fx(x , y)i + fy (x , y)j .

Fact

If u is a unit vector and f (x , y) is a function of 2 variables then

Duf (x , y) = ∇f · u.

Kevin James MTHSC 206 Section 15.6 – Directional Derivatives and the Gradient Vector



Example

Consider the function f (x , y) = exy . Compute the gradient of f .
Compute the directional derivative of f in the direction of
u = (

√
3/2, 1/2).
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Functions of 3 variables

Definition

The directional derivative of f (x , y , z) at (x0, y0, z0) in the
direction of the unit vector u = (a, b, c) is

Duf (x0, y0, z0) = lim
h→0

f (x0 + ah, y0 + bh, z0 + ch)− f (x0, y0, z0)

h
.

if this limit exists.

Fact

If f (x , y , z) is differentiable then

Duf (x , y , z) = fx(x , y , z)a + fy (x , y , z)b + fz(x , y , z)c .
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Definition

We define the gradient of f (x , y , z) as

∇f = (fx , fy , fz).

Fact

Duf (x , y , z) = ∇f (x , y , z) · u

Example

Suppose that f (x , y , z) = sin(xy)ez . Compute ∇f . What is the
directional derivative at (π, 1/2, 0) in the direction
(
√

3/3,
√

3/3,
√

3/3). Can you find the direction which maximizes
Duf at this point?
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Theorem

Suppose that f is a differentiable function of two or three
variables. The maximal value of the directional derivative Duf (~x)
at the point ~x is |∇f | and it occurs when u = 1

|∇f |∇f .

Example

Consider the function f (x , y , z) = exyz . What is the directional
derivative at the point (0, 1, 0) in the direction of
−−−−−−−−−−−−→
((0, 1, 0), (1, 1, 1)). What is the maximum value of the directional
derivative at this point? In which direction does it occur?

Example

Again consider the function f (x , y , z) = exyz . What is the
directional derivative at the point (1, 1, 1) in the direction of
−−−−−−−−−−−−→
((1, 1, 1), (2, 3, 1)). What is the maximum value of the directional
derivative at this point? In which direction does it occur?
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Tangent Planes to Level Surfaces

Suppose that S is the level surface of F (x , y , z) given by
F (x , y , z) = k and P = (x0, y0, z0) is a point on S .

Let C be any curve that lies on S and passes through P.
Then C can be parametrized by r(t) = (x(t), y(t), z(t)).
Suppose that r(t0) = P.
Note that F (x(t), y(t), z(t)) = k because C lies on S .
Supposing all functions to be differentiable, we can use the chain
rule to obtian,

0 = Fxx ′(t) + Fyy ′(t) + Fzz ′(t) = ∇F · r ′(t).

That is, ∇F (P) is orthogonal to the tangent vector at P of any
curve along S passing through P.

Kevin James MTHSC 206 Section 15.6 – Directional Derivatives and the Gradient Vector



Tangent Planes to Level Surfaces

Suppose that S is the level surface of F (x , y , z) given by
F (x , y , z) = k and P = (x0, y0, z0) is a point on S .
Let C be any curve that lies on S and passes through P.

Then C can be parametrized by r(t) = (x(t), y(t), z(t)).
Suppose that r(t0) = P.
Note that F (x(t), y(t), z(t)) = k because C lies on S .
Supposing all functions to be differentiable, we can use the chain
rule to obtian,

0 = Fxx ′(t) + Fyy ′(t) + Fzz ′(t) = ∇F · r ′(t).

That is, ∇F (P) is orthogonal to the tangent vector at P of any
curve along S passing through P.

Kevin James MTHSC 206 Section 15.6 – Directional Derivatives and the Gradient Vector



Tangent Planes to Level Surfaces

Suppose that S is the level surface of F (x , y , z) given by
F (x , y , z) = k and P = (x0, y0, z0) is a point on S .
Let C be any curve that lies on S and passes through P.
Then C can be parametrized by r(t) = (x(t), y(t), z(t)).

Suppose that r(t0) = P.
Note that F (x(t), y(t), z(t)) = k because C lies on S .
Supposing all functions to be differentiable, we can use the chain
rule to obtian,

0 = Fxx ′(t) + Fyy ′(t) + Fzz ′(t) = ∇F · r ′(t).

That is, ∇F (P) is orthogonal to the tangent vector at P of any
curve along S passing through P.

Kevin James MTHSC 206 Section 15.6 – Directional Derivatives and the Gradient Vector



Tangent Planes to Level Surfaces

Suppose that S is the level surface of F (x , y , z) given by
F (x , y , z) = k and P = (x0, y0, z0) is a point on S .
Let C be any curve that lies on S and passes through P.
Then C can be parametrized by r(t) = (x(t), y(t), z(t)).
Suppose that r(t0) = P.

Note that F (x(t), y(t), z(t)) = k because C lies on S .
Supposing all functions to be differentiable, we can use the chain
rule to obtian,

0 = Fxx ′(t) + Fyy ′(t) + Fzz ′(t) = ∇F · r ′(t).

That is, ∇F (P) is orthogonal to the tangent vector at P of any
curve along S passing through P.

Kevin James MTHSC 206 Section 15.6 – Directional Derivatives and the Gradient Vector



Tangent Planes to Level Surfaces

Suppose that S is the level surface of F (x , y , z) given by
F (x , y , z) = k and P = (x0, y0, z0) is a point on S .
Let C be any curve that lies on S and passes through P.
Then C can be parametrized by r(t) = (x(t), y(t), z(t)).
Suppose that r(t0) = P.
Note that F (x(t), y(t), z(t)) = k because C lies on S .

Supposing all functions to be differentiable, we can use the chain
rule to obtian,

0 = Fxx ′(t) + Fyy ′(t) + Fzz ′(t) = ∇F · r ′(t).

That is, ∇F (P) is orthogonal to the tangent vector at P of any
curve along S passing through P.

Kevin James MTHSC 206 Section 15.6 – Directional Derivatives and the Gradient Vector



Tangent Planes to Level Surfaces

Suppose that S is the level surface of F (x , y , z) given by
F (x , y , z) = k and P = (x0, y0, z0) is a point on S .
Let C be any curve that lies on S and passes through P.
Then C can be parametrized by r(t) = (x(t), y(t), z(t)).
Suppose that r(t0) = P.
Note that F (x(t), y(t), z(t)) = k because C lies on S .
Supposing all functions to be differentiable, we can use the chain
rule to obtian,

0 = Fxx ′(t) + Fyy ′(t) + Fzz ′(t) =

∇F · r ′(t).

That is, ∇F (P) is orthogonal to the tangent vector at P of any
curve along S passing through P.

Kevin James MTHSC 206 Section 15.6 – Directional Derivatives and the Gradient Vector



Tangent Planes to Level Surfaces

Suppose that S is the level surface of F (x , y , z) given by
F (x , y , z) = k and P = (x0, y0, z0) is a point on S .
Let C be any curve that lies on S and passes through P.
Then C can be parametrized by r(t) = (x(t), y(t), z(t)).
Suppose that r(t0) = P.
Note that F (x(t), y(t), z(t)) = k because C lies on S .
Supposing all functions to be differentiable, we can use the chain
rule to obtian,

0 = Fxx ′(t) + Fyy ′(t) + Fzz ′(t) = ∇F · r ′(t).

That is, ∇F (P) is orthogonal to the tangent vector at P of any
curve along S passing through P.

Kevin James MTHSC 206 Section 15.6 – Directional Derivatives and the Gradient Vector



Tangent Planes to Level Surfaces

Suppose that S is the level surface of F (x , y , z) given by
F (x , y , z) = k and P = (x0, y0, z0) is a point on S .
Let C be any curve that lies on S and passes through P.
Then C can be parametrized by r(t) = (x(t), y(t), z(t)).
Suppose that r(t0) = P.
Note that F (x(t), y(t), z(t)) = k because C lies on S .
Supposing all functions to be differentiable, we can use the chain
rule to obtian,

0 = Fxx ′(t) + Fyy ′(t) + Fzz ′(t) = ∇F · r ′(t).

That is, ∇F (P) is orthogonal to the tangent vector at P of any
curve along S passing through P.

Kevin James MTHSC 206 Section 15.6 – Directional Derivatives and the Gradient Vector



Definition

We define the tangent plane to the level surface F (x , y , z) = k
at P = (x0, y0, z0) as the plane that passes through P and has
normal vector ∇F (x0, y0, z0). This plane has equation

Fx(x0, y0, z0)(x−x0)+Fy (x0, y0, z0)(y−y0)+Fz(x0, y0, z0)(z−z0) = 0.

or
∇F (x0, y0, z0) ·

−−−−−−−−→
(P, (x , y , z)) = 0
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Definition

We define the normal line to the level surface F (x , y , z) = k at P
to be the line passing through P and orthogonal to the tangent
plane,

that is the line through P parallel to the normal vector for
the tangent plane which is ∇F (P). This line has symmetric
equations

x − x0
Fx(x0, y0, z0)

=
y − y0

Fy (x0, y0, z0)
=

z − z0
Fz(x0, y0, z0)

.
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Note

We can think of the graph z = f (x , y) of f (x , y) as the level
surface F (x , y , z) = 0 where F (x , y , z) = f (x , y)− z .

In this case, ∇F = (fx , fy ,−1)
So the tangent plane to the graph of f as a level surface at P
would have equation

fx(x0, y0, z0)(x − x0) + fy (x0, y0, z0)(y − y0)− (z − z0) = 0.

which is consistent with our previous definition of tangent plane.
The normal line has equation

x − x0
fx(x0, y0, z0)

=
y − y0

fy (x0, y0, z0)
= −(z − z0).
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Note

We can think of the graph z = f (x , y) of f (x , y) as the level
surface F (x , y , z) = 0 where F (x , y , z) = f (x , y)− z .
In this case, ∇F = (fx , fy ,−1)
So the tangent plane to the graph of f as a level surface at P
would have equation

fx(x0, y0, z0)(x − x0) + fy (x0, y0, z0)(y − y0)− (z − z0) = 0.

which is consistent with our previous definition of tangent plane.
The normal line has equation

x − x0
fx(x0, y0, z0)

=
y − y0

fy (x0, y0, z0)
= −(z − z0).
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Example

Find the equations of the tangent plane and normal line at the

point (1, 1, 2) to the ellipsoid x2

9 + y2

4 + z2 = 5.
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