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DEFINITION

We define the directional derivative of the function f(x, y) at the
point (xp, yo) in the direction of the unit vector u = (a, b) (u
should be thought of as a vector in the xy-plane) as

i f(xo + ah, yo + by) — f(x0, y0)
= |lim .
h—0 h

Dyf(xo, y0)
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DEFINITION

We define the directional derivative of the function f(x, y) at the
point (xp, yo) in the direction of the unit vector u = (a, b) (u
should be thought of as a vector in the xy-plane) as

| fX +ah7 +b —fX’
D,f(x0,¥0) = M}n (x0 Yo - Y) (xo )/0)'

THEOREM
If f(x,y) is differentiable, then

| o
A\

D.f(x,y) = fi(x,y)a+ f,(x, y)b.

Kevin James MTHSC 206 Section 15.6 — Directional Derivatives and the G



PROOF.

Define g(h) = f(xo + ah, yo + bh).
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PROOF.
Define g(h) = f(xo + ah, yo + bh).
Then, we have that

6(h) ~5(0) _
h—0 h
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PROOF.
Define g(h) = f(xo + ah, yo + bh).
Then, we have that

g(h) —g(0) _ im f(xo + ah, yo + bh) — f(x0, y0)
h—0 h h—0 h
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PROOF.
Then, we have that

h) — f h h) — f
g'(0) = lim g(h) —g(0) _ . flxo+ ah yo+ bh) — f(x0, y0)
h—0 h h—0 h
= Duf(XOLyO)‘

Kevin James MTHSC 206 Section 15.6 — Directional Derivatives and the G



PROOF.
Define g(h) = f(xo + ah, yo + bh).
Then, we have that

h) — f h h) — f
g'(0) = lim g(h) —g(0) _ . flxo+ ah yo+ bh) — f(x0, y0)
h—0 h h—0 h
= Duf(XOLyO)‘

We can also write g(h) = f(x, y) where x = xp + ah and
Yy = Yo+ bh.
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PROOF.
Define g(h) = f(xo + ah, yo + bh).
Then, we have that

g(h) —g(0) _ . f(xo+ah,yo+ bh) — f(x, y0)

/ . o
g(0) = /Llno h h—0 h
= D,f(xo0, yo).

We can also write g(h) = f(x, y) where x = xp + ah and

Yy = Yo+ bh.
Applying the chain rule, we have,

g'(h) = f(x,y)a+ f,(x,y)b.
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PROOF.
Define g(h) = f(xo + ah, yo + bh).
Then, we have that

g(h) — g(0) f(xo + ah, yo + bh) — f(x0, o)

/ _ - — .
g(0) = ILTO h ILTO h
= Duf(x0,¥0)-

We can also write g(h) = f(x, y) where x = xp + ah and

Yy = Yo+ bh.
Applying the chain rule, we have,

g'(h) = fi(x,y)a+ f,(x,y)b.
Thus,

Dyf(x0, y0) = &'(0) = fi(x0, yo)a + £, (x0, yo)b.
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If the vector u is at an angle # with the x-axis then we can write
u = (cos(#),sin(#)). Thus

D,f(x,y) = f(x,y)cos(8) + f,(x, y) sin(0).
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If the vector u is at an angle 6 with the x-axis then we can write
u = (cos(#),sin(#)). Thus

D,f(x,y) = f(x,y)cos(8) + f,(x, y) sin(0).

Find the directional derivative D,f(x,y) of the function
f(x,y) = x> + xy + y? in the direction of the unit vector which is
at an angle of § = 3 to the x-axis.
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The directional derivative of f in the direction of u can be written
as

Duf(x,y) = (f(x,y), ﬂ/(X,y)) > Wo
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The directional derivative of f in the direction of u can be written
as

Duf(x,y) = (f(x,y), f;’(xvy)) > Wo

| A

DEFINITION
We define the gradient of a function f(x, y) as

VFf = (f(x,¥), f,(x,¥)) = £, ¥)i + f,(x, y)j-
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NOTE

The directional derivative of f in the direction of u can be written
as

Duf(x,y) = (f(x,y), £ (x,¥)) - u.

| A

DEFINITION

We define the gradient of a function f(x, y) as

VFf = (f(x,¥), f,(x,¥)) = £, ¥)i + f,(x, y)j-

Fact

| \

If u is a unit vector and f(x,y) is a function of 2 variables then

D,f(x,y) = Vf-u.

A\
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Consider the function f(x,y) = €¥. Compute the gradient of f.
Compute the directional derivative of £ in the direction of

u=(v3/2,1/2).
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FUNCTIONS OF 3 VARIABLES

DEFINITION

The directional derivative of f(x,y, z) at (xo, o, 20) in the

direction of the unit vector u = (a, b, c) is

Daf (%6, Y0, 20) = fliL“o f(xo + ah, yo + bh, zy + ch) — f(xo,yo,zo).

h

if this limit exists.
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FUNCTIONS OF 3 VARIABLES

DEFINITION

The directional derivative of f(x,y, z) at (xo, o, 20) in the
direction of the unit vector u = (a, b, c) is

Daf (%6, Y0, 20) = fliL“o f(xo + ah, yo + bh,zf;+ ch) — f(Xo,yo,zo).

if this limit exists.

| A\

Fact
If f(x,y,z) is differentiable then

Duf(x,y,z) = f(x,y,z)a+ f,(x,y,z)b+ f(x,y, z)c.
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We define the gradient of f(x, y, z) as

Vf = (f. fy, f).
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DEFINITION

We define the gradient of f(x, y, z) as

Duf(x,y,z) = Vf(x,y,z) u
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DEFINITION

We define the gradient of f(x, y, z) as

Vf = (%, 1y, f2).

Fact

| \

Duf(Xay7Z) = Vf(X,y,Z)' u

EXAMPLE

Suppose that f(x,y, z) = sin(xy)e?. Compute Vf. What is the
directional derivative at (m,1/2,0) in the direction
(v/3/3,v/3/3,4/3/3). Can you find the direction which maximizes
D,f at this point?

| \

A\
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Suppose that f is a differentiable function of two or three
variables. The maximal value of the directional derivative D,f(X)
at the point X is |Vf| and it occurs when u = ‘V—lﬂVf.
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THEOREM

Suppose that f is a differentiable function of two or three
variables. The maximal value of the directional derivative D,f(X)
at the point X is |Vf| and it occurs when u = W—lf'Vf.

EXAMPLE

Consider the function f(x,y,z) = €¥%. What is the directional
derivative at the point (0,1,0) in the direction of
((0,1,0),(1,1,1)). What is the maximum value of the directional
derivative at this point? In which direction does it occur?

| A

\
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THEOREM

Suppose that f is a differentiable function of two or three
variables. The maximal value of the directional derivative D,f(X)
at the point X is |Vf| and it occurs when u = ‘V—lﬂVf.

EXAMPLE
Consider the function f(x,y,z) = €¥%. What is the directional
derivative at the point (0,1,0) in the direction of

((0,1,0),(1,1,1)). What is the maximum value of the directional
derivative at this point? In which direction does it occur?

| A

EXAMPLE

Again consider the function f(x,y,z) = €¥*. What is the
directional derivative at the point (1,1,1) in the direction of

((1,1,1),(2,3,1)). What is the maximum value of the directional
derivative at this point? In which direction does it occur?
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TANGENT PLANES TO LEVEL SURFACES

Suppose that S is the level surface of F(x,y, z) given by
F(x,y,z) = k and P = (xo, Y0, 20) is a point on S.
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TANGENT PLANES TO LEVEL SURFACES

Suppose that S is the level surface of F(x,y, z) given by
F(x,y,z) = k and P = (xo, Y0, 20) is a point on S.
Let C be any curve that lies on S and passes through P.
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TANGENT PLANES TO LEVEL SURFACES

Suppose that S is the level surface of F(x,y, z) given by
F(x,y,z) = k and P = (xo, Y0, 20) is a point on S.

Let C be any curve that lies on S and passes through P.
Then C can be parametrized by r(t) = (x(t), y(t), z(t)).
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TANGENT PLANES TO LEVEL SURFACES

Suppose that S is the level surface of F(x,y, z) given by
F(x,y,z) = k and P = (xo, Y0, 20) is a point on S.

Let C be any curve that lies on S and passes through P.
Then C can be parametrized by r(t) = (x(t), y(t), z(t)).
Suppose that r(ty) = P.
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TANGENT PLANES TO LEVEL SURFACES

Suppose that S is the level surface of F(x,y, z) given by
F(x,y,z) = k and P = (xo, Y0, 20) is a point on S.

Let C be any curve that lies on S and passes through P.
Then C can be parametrized by r(t) = (x(t), y(t), z(t)).
Suppose that r(ty) = P.

Note that F(x(t),y(t),z(t)) = k because C lies on S.
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TANGENT PLANES TO LEVEL SURFACES

Suppose that S is the level surface of F(x,y, z) given by
F(x,y,z) = k and P = (xo, Y0, 20) is a point on S.

Let C be any curve that lies on S and passes through P.

Then C can be parametrized by r(t) = (x(t), y(t), z(t)).
Suppose that r(ty) = P.

Note that F(x(t),y(t),z(t)) = k because C lies on S.
Supposing all functions to be differentiable, we can use the chain
rule to obtian,

0= FX'(t)+ Fyy'(t) + F.2/(t) =
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TANGENT PLANES TO LEVEL SURFACES

Suppose that S is the level surface of F(x,y, z) given by
F(x,y,z) = k and P = (xo, Y0, 20) is a point on S.

Let C be any curve that lies on S and passes through P.

Then C can be parametrized by r(t) = (x(t), y(t), z(t)).
Suppose that r(ty) = P.

Note that F(x(t),y(t),z(t)) = k because C lies on S.
Supposing all functions to be differentiable, we can use the chain
rule to obtian,

0= FX'(t)+ Fyy'(t) + F,Z'(t) = VF - F'(¢).
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TANGENT PLANES TO LEVEL SURFACES

Suppose that S is the level surface of F(x,y, z) given by
F(x,y,z) = k and P = (xo, Y0, 20) is a point on S.

Let C be any curve that lies on S and passes through P.

Then C can be parametrized by r(t) = (x(t), y(t), z(t)).
Suppose that r(ty) = P.

Note that F(x(t),y(t),z(t)) = k because C lies on S.
Supposing all functions to be differentiable, we can use the chain
rule to obtian,

0= FX'(t)+ Fyy'(t) + F,Z'(t) = VF - F'(¢).

That is, VF(P) is orthogonal to the tangent vector at P of any
curve along S passing through P.

Kevin James MTHSC 206 Section 15.6 — Directional Derivatives and the G



DEFINITION

We define the tangent plane to the level surface F(x,y,z) = k
at P = (xo, Y0, 20) as the plane that passes through P and has
normal vector VF(xp, o, 20). This plane has equation

Fx(Xo,yo,Zo)(X*Xo)ﬁLFy(Xo,yo,Zo)(Y*Yo)ﬁLFz(Xo,YO,Zo)(Z*ZO) =0

or

VF(x0,¥0,20) - (P,(x,y,2)) =0
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DEFINITION

We define the normal line to the level surface F(x,y,z) = k at P
to be the line passing through P and orthogonal to the tangent
plane,
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DEFINITION

We define the normal line to the level surface F(x,y,z) = k at P
to be the line passing through P and orthogonal to the tangent
plane, that is the line through P parallel to the normal vector for
the tangent plane which is VF(P).
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DEFINITION

We define the normal line to the level surface F(x,y,z) = k at P
to be the line passing through P and orthogonal to the tangent
plane, that is the line through P parallel to the normal vector for
the tangent plane which is VF(P). This line has symmetric
equations

X — Xo _ Y —Yo _ Z—2
FX(Xan()aZO) Fy(Xan()aZO) FZ(X07y07ZO)
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NOTE

We can think of the graph z = f(x,y) of f(x,y) as the level
surface F(x,y,z) = 0 where F(x,y,z) = f(x,y) — z.
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NOTE

We can think of the graph z = f(x,y) of f(x,y) as the level
surface F(x,y,z) = 0 where F(x,y,z) = f(x,y) — z.
In this case, VF = (f, f,, —1)
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NOTE

We can think of the graph z = f(x,y) of f(x,y) as the level
surface F(x,y,z) = 0 where F(x,y,z) = f(x,y) — z.

In this case, VF = (f;, f,, —1)

So the tangent plane to the graph of f as a level surface at P
would have equation

f(x0, Y0, 20)(x — X0) + £, (x0, Y0, 20)(y — y0) — (z — 20) = 0.

which is consistent with our previous definition of tangent plane.
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NOTE

We can think of the graph z = f(x,y) of f(x,y) as the level
surface F(x,y,z) = 0 where F(x,y,z) = f(x,y) — z.

In this case, VF = (f;, f,, —1)

So the tangent plane to the graph of f as a level surface at P
would have equation

f(x0, Y0, 20)(x — X0) + £, (x0, Y0, 20)(y — y0) — (z — 20) = 0.

which is consistent with our previous definition of tangent plane.
The normal line has equation
X —Xo Y=Y

= = —\Z—2n).
fo(x0,¥0,20)  f,(x0, Y0, 20) ( 0)
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Find the equations of the tangent plane and normal line at the
2
point (1,1,2) to the ellipsoid % + % + 22 =5.
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