MTHSC 206 Section 16.1 – Double integrals over rectangles

Kevin James

Suppose that we want to compute the volume underneath the graph of a positive valued function f(x, y) as x and y vary over the rectangle $R = [a, b] \times [c, d]$.

Suppose that we want to compute the volume underneath the graph of a positive valued function f(x, y) as x and y vary over the rectangle $R = [a, b] \times [c, d]$.

Motivated by our success with functions of one variable, we subdivide R into small rectangles.

Suppose that we want to compute the volume underneath the graph of a positive valued function f(x, y) as x and y vary over the rectangle $R = [a, b] \times [c, d]$.

Motivated by our success with functions of one variable, we subdivide R into small rectangles.

Set $\Delta x = \frac{b-a}{n}$ and $\Delta y = \frac{d-c}{m}$ for some integers m and n.

Suppose that we want to compute the volume underneath the graph of a positive valued function f(x, y) as x and y vary over the rectangle $R = [a, b] \times [c, d]$.

Motivated by our success with functions of one variable, we subdivide R into small rectangles.

Set $\Delta x = \frac{b-a}{n}$ and $\Delta y = \frac{d-c}{m}$ for some integers m and n. Let $x_i = a + i\Delta x$ and $y_i = c + j\Delta y$.

Suppose that we want to compute the volume underneath the graph of a positive valued function f(x, y) as x and y vary over the rectangle $R = [a, b] \times [c, d]$.

Motivated by our success with functions of one variable, we subdivide R into small rectangles.

Set $\Delta x = \frac{b-a}{n}$ and $\Delta y = \frac{d-c}{m}$ for some integers m and n.

Let $x_i = a + i\Delta x$ and $y_j = c + j\Delta y$.

The volume underneath f(x, y) and directly above the rectangle $R_{i,j} = [x_{i-1}, x_i] \times [y_{j-1}, y_j]$ can be approximated by

Suppose that we want to compute the volume underneath the graph of a positive valued function f(x, y) as x and y vary over the rectangle $R = [a, b] \times [c, d]$.

Motivated by our success with functions of one variable, we subdivide R into small rectangles.

Set $\Delta x = \frac{b-a}{n}$ and $\Delta y = \frac{d-c}{m}$ for some integers m and n.

Let $x_i = a + i\Delta x$ and $y_j = c + j\Delta y$.

The volume underneath f(x, y) and directly above the rectangle $R_{i,j} = [x_{i-1}, x_i] \times [y_{j-1}, y_j]$ can be approximated by

$$f(x_{ij}, y_{ij})\Delta x \Delta y = f(x_{ij}, y_{ij})\Delta A$$
,

where (x_{ij}, y_{ij}) is a point lying in R_{ij} . Thus we approximate the volume underneath R by

$$V \approx \sum_{i=1}^{n} \sum_{j=1}^{m} f(x_{ij}, y_{ij}) \Delta A.$$

FACT

If the function f(x, y) is continuous then the volume lying below the graph of f(x, y) and directly above the rectangle $R = [a, b] \times [c, d]$ is given by

$$V = \lim_{m,n\to\infty} \sum_{i=1}^n \sum_{j=1}^m f(x_{ij},y_{ij}) \Delta A.$$

FACT

If the function f(x, y) is continuous then the volume lying below the graph of f(x, y) and directly above the rectangle $R = [a, b] \times [c, d]$ is given by

$$V = \lim_{m,n\to\infty} \sum_{i=1}^n \sum_{j=1}^m f(x_{ij},y_{ij}) \Delta A.$$

DEFINITION

We define the <u>double integral</u> of f(x, y) over the rectangle $R = [a, b] \times [c, d]$ by

$$\int \int_{R} f(x,y) dA = \lim_{m,n\to\infty} \sum_{i=1}^{n} \sum_{j=1}^{m} f(x_{ij},y_{ij}) \Delta A$$

DEFINITION

A function f is called <u>integrable</u> if the limit in the previous definition exists.

DEFINITION

A function f is called <u>integrable</u> if the limit in the previous definition exists.

Note

We could choose our point (x_{ij}, y_{ij}) to be the corner point (x_i, y_j) . Then the expression for the double integral becomes

$$\int \int_{R} f(x, y) dA = \lim_{m, n \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{m} f(x_{i}, y_{j}) \Delta A$$

EXAMPLE

Estimate the area underneath the graph of f(x, y) = xy and directly above the rectangle $[1,5] \times [1,5]$. Can you compute the area?

EXAMPLE

Estimate the area underneath the graph of f(x, y) = xy and directly above the rectangle $[1,5] \times [1,5]$. Can you compute the area?

EXAMPLE

Let $R = [-1,1] \times [-3,3]$. Interpret the integral $\int \int_R \sqrt{1-x^2} \, dA$ as a volume and calculate its value exactly.

MIDPOINT RULE FOR DOUBLE INTEGRALS

$$\int \int_{R} f(x,y) dA \approx \sum_{i=1}^{n} \sum_{j=1}^{m} f(\bar{x_i}, \bar{y_j}) \Delta A,$$

where $\bar{x}_i = x_{i-1} + \frac{\Delta x}{2}$ is the midpoint of $[x_{i-1}, x_i]$ and $\bar{y}_i = y_{i-1} + \frac{\Delta y}{2}$ is the midpoint of $[y_{i-1}, y_i]$.

MIDPOINT RULE FOR DOUBLE INTEGRALS

$$\int \int_{R} f(x,y) dA \approx \sum_{i=1}^{n} \sum_{j=1}^{m} f(\bar{x}_{i}, \bar{y}_{j}) \Delta A,$$

where $\bar{x}_i = x_{i-1} + \frac{\Delta x}{2}$ is the midpoint of $[x_{i-1}, x_i]$ and $\bar{y}_i = y_{i-1} + \frac{\Delta y}{2}$ is the midpoint of $[y_{i-1}, y_i]$.

EXAMPLE

Let $R = [0, 4] \times [0, 4]$. Use the midpoint rule to estimate $\iint_R (x^2 + y^2) dA$.

Note

We can estimate the average value of the function f(x, y) over the rectangle $R = [a, b] \times [c, d]$ by

$$\frac{1}{mn}\sum_{i=1}^n\sum_{j=1}^m f(x_i,y_j) =$$

Note

We can estimate the average value of the function f(x, y) over the rectangle $R = [a, b] \times [c, d]$ by

$$\frac{1}{mn} \sum_{i=1}^{n} \sum_{j=1}^{m} f(x_i, y_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} f(x_i, y_j) \frac{\Delta A}{A}$$

Note

We can estimate the average value of the function f(x, y) over the rectangle $R = [a, b] \times [c, d]$ by

$$\frac{1}{mn} \sum_{i=1}^{n} \sum_{j=1}^{m} f(x_i, y_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} f(x_i, y_j) \frac{\Delta A}{A}$$
$$= \frac{1}{A} \sum_{i=1}^{n} \sum_{j=1}^{m} f(x_i, y_j) \Delta A.$$

DEFINITION

We define the average value of the function f(x, y) over the rectangle $R = \overline{[a, b] \times [c, d]}$ by

$$f_{\text{ave}} = \frac{1}{A(R)} \int \int_R f(x, y) \, dA.$$

DEFINITION

We define the average value of the function f(x, y) over the rectangle $R = \overline{[a, b] \times [c, d]}$ by

$$f_{\text{ave}} = \frac{1}{A(R)} \int \int_{R} f(x, y) \, dA.$$

EXAMPLE

Estimate the average value of the function f(x, y) = xy on the rectangle $R = [1, 5] \times [1, 5]$.

Properties of Double Integrals

Properties of Double Integrals

- 2 If $c \in \mathbb{R}$, $\iint_R cf(x,y) dA = c \iint_R f(x,y) dA$.

Properties of Double Integrals

- 2 If $c \in \mathbb{R}$, $\iint_R cf(x,y) dA = c \iint_R f(x,y) dA$.
- 3 If $f(x,y) \ge g(x,y)$ for all points (x,y) in R then $\int \int_R f(x,y) dA \ge \int \int g(x,y) dA$.