MTHSC 206 SECTION 16.6 – TRIPLE INTEGRALS

Kevin James

DEFINITION

The triple integral of f(x, y, z) over the box $B = \overline{\{(x, y, z) \mid a \le x \le b; c \le y \le d; r \le z \le s\}}$ is defined by

$$\int \int \int_{B} f(x, y, z) \, dV = \lim_{l, m, n \to 0} \sum_{i=0}^{l} \sum_{j=0}^{m} \sum_{k=0}^{n} f(x_{i}, y_{j}, z_{k}) \Delta V.$$

THEOREM (FUBINI)

If f(x, y, z) is continuous on B then,

$$\int \int \int_{B} f(x,y,z) \ dV = \int_{a}^{b} \int_{c}^{d} \int_{r}^{s} f(x,y,z) \ dz \ dy \ dx.$$

Note

There are a total of six possible orders of integration for triple integrals. A more general version of Fubini's theorem guarantees that these all have the same value.

EXAMPLE

Evaluate the triple integral $\int \int \int_B xyz \ dV$ where

$$B = [0,1] \times [0,1] \times [0,1].$$

DEFINITION

We consider three types of regions is \mathbb{R}^3 .

TYPE 1
$$E = \{(x, y, z) \mid (x, y) \in D; u_1(x, y) \le z \le u_2(x, y)\}$$

TYPE 2 $E = \{(x, y, z) \mid (y, z) \in D; u_1(y, z) \le x \le u_2(y, z)\}$
TYPE 3 $E = \{(x, y, z) \mid (x, z) \in D; u_1(x, z) \le y \le u_2(x, z)\}$

FACT

If E is a type 1,2 or 3 region, then $\int \int \int_E f(x,y,z) dV$ has the same value as

$$\begin{cases} \int \int_{D} \left[\int_{u_{1}(x,y)}^{u_{2}(x,y)} f(x,y,z) \ dz \right] \ dA & \text{if E is type 1,} \\ \\ \int \int_{D} \left[\int_{u_{1}(y,z)}^{u_{2}(y,z)} f(x,y,z) \ dx \right] \ dA & \text{if E is type 2,} \\ \\ \int \int_{D} \left[\int_{u_{1}(x,z)}^{u_{2}(x,z)} f(x,y,z) \ dy \right] \ dA & \text{if E is type 3.} \end{cases}$$

EXAMPLE

Evaluate $\int \int \int_E z \, dV$ where E is the solid tetrahedron bounded by the four planes x=0, y=0, z=0 and x+y+z=1.

EXAMPLE

Evaluate $\int \int \int_E \sqrt{y^2 + z^2} \, dV$, where E is the solid bounded by the paraboloid $x = y^2 + z^2$ and the plane x = 4.

APPLICATIONS

VOLUME

If E is a solid region in \mathbb{R}^3 , then $V(E) = \int \int \int_E dV$.

Mass and density

Suppose that E is a solid in \mathbb{R}^3 with density function $\rho(x,y,z)$. Then the mass of E is given by $m=\int\int\int\rho(x,y,z)\,\mathrm{dV}.$

Moments and Center of Mass

Suppose that E is a solid in \mathbb{R}^3 with density function $\rho(x,y,z)$. The moments of E about the three coordinate planes are

$$\begin{array}{lcl} \mathit{M}_{yz} & = & \int \int \int_{E} x \rho(x,y,z) \; \mathrm{dV}, & \mathit{M}_{xz} = \int \int \int_{E} y \rho(x,y,z) \; \mathrm{dV}, \\ \\ \mathit{M}_{xy} & = & \int \int \int_{E} z \rho(x,y,z) \; \mathrm{dV}. \end{array}$$

Thus the center of mass of E is at $(\bar{x}, \bar{y}, \bar{z})$ where

$$\bar{x} = \frac{M_{yz}}{m}, \quad \bar{y} = \frac{M_{xz}}{m} \quad \text{and} \quad \bar{z} = \frac{M_{xy}}{m}$$

EXAMPLE

Find the center of mass of the solid of constant density ρ that is bounded by the parabolic cylinder $y=x^2$ and the planes z=0 and z=1.