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Theorem

Let C be a positively oriented, piecewise smooth curve, simple
closed curve in R2. Let D be the region bounded by C. If P(x , y)(
and Q(x , y) have continuous partial derivatives on an open region
containing D, then∫

C
P dx + Q dy =

∫ ∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA.

Note

In the situation above, we sometimes denote C as ∂D.
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Sketch of Proof

We will assume that the region D is both of type I and type II.

Note that it is enough to show that∫
C P dx = −

∫ ∫
D

∂P
∂y dA, and

∫
C Q dy =

∫ ∫
D

∂Q
∂x dA.

We will show that first equality.
Writing

D = {(x , y) | a ≤ x ≤ b; g1(x) ≤ y ≤ g2(x)},

we have∫ ∫
D

∂P

∂y
dA =

∫ b

a

∫ g2(x)

g1(x)

∂P

∂y
dy dx

=

∫ b

a
[P(x , g2(x))− P(x , g1(x))] dx.
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Sketch of proof continued ...

Now we break C into 4 curves C1,C2,C3 and C4 given by:

C1 : [t, g1(t)]; a ≤ t ≤ b

C2 : [b, t]; g1(b) ≤ t ≤ g2(b)

−C3 : [t, g2(t)]; a ≤ t ≤ b

−C4 : [a, t]; g1(a) ≤ t ≤ g2(a).

Note that
∫
C2 P dx = 0 =

∫
C4 P dx. Thus,

∫
C
P dx =

∫
C1

P dx−
∫
−C3

P dx

=

∫ b

a
[P(t, g1(t))− P(t, g2(t))] dt

= −
∫ ∫

D

∂P

∂y
dA.
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Example

Evaluate
∫
C x3 dx + xy dy where C is the curve bounding the

triangular region with vertices (0, 0), (1, 0) and (0, 2).

Example

Evaluate
∫
C (3y − esin(x)) dx + (7x +

√
y4 + 1) dy where C is the

circle about the origin of radius 3.

Note

If P and Q are known to be zero on C and if D is the interior of C
then no matter the behavior of P and Q in D, we have∫ ∫

D

(
∂Q
∂x −

∂P
∂y

)
=
∫
C P dx + Q dy = 0.
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Note

We can use Green’s theorem to calculate area. We simply need to
arrange for ∂Q

∂x −
∂P
∂y = 1.

Here are some possible choices:

P(x , y) = 0 P(x , y) = −y , P(x , y) =
−y
2

Q(x , y) = x Q(x , y) = 0, Q(x , y) =
x

2
.

Then, Green’s theorem gives

A =

∫
C
x dy = −

∫
C
y dx =

1

2

∫
C
x dy− y dx.
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Example

Find the area enclosed by the ellipse x2

a2
+ y2

b2
= r2.

Note

We can use Green’s theorem to integrate over regions which are
not of type I and of type II but are finite unions of such regions.

Example

Evaluate
∫
C y2 dx + 3xy dy where C is the boundary of the region

bounded above by the upper semicircle of radius 2 and below by
the upper semicircle of radius 1.
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Note

With some care, Green’s theorem can be extended to regions with
holes.

Example

If F (x , y) =
[

−y
x2+y2 ,

x
x2+y2

]
, show that

∫
C F · dr = 2π for every

positively oriented, simple, closed path that encloses the origin.
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