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GOAL

We wish to generalize Green's theorem to surfaces. That is we
wish to relate the integral of a function over a surface to the line
integral of some function around the boundary.

INDUCED ORIENTATION

| A

Given a smooth orientable surface S and an orientation (-i.e. a
continuous choice of unit normal on S), we define the orientation
on the boundary 9S of S to be such that if you walk around C in
the positive direction with your head pointing in the direction of
the unit normal of S, then then the surface will remain on your Ieft.)
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THEOREM (STOKES)

Let S be an oriented piecewise-smooth surface that is bounded by
a simple, closed, piecewise-smooth boundary curve 0S with
orientation induced form S. Let F be a vector field whose
components have continuous partials on an open region of R? that
contains S. Then

//CF- dr://s curl(F) - dS
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Evaluate [ F - dr where F(x,y,z) = [-y? x,2°] and C is the
curve of intersection of the plane y + z = 2 and the cylinder
x>+ y?=1.

Use Stokes’ Theorem to compute the integral [ [o curl(F)- dS,
where F = [xz,yz, xy] and S is the part of the sphere of radius 2
lying inside the cylinder x> + y? = 1 and above the xy-plane.
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NOTE

Note that if S; and S, are two orientable piecewise-smooth
surfaces with the same boundary C which satisfies the hypothesis
of Stokes’ theorem, then

//51 curI(F)dS://CF- dr://s2 curl(F) - dS.

NOTE

| A

If F is conservative then curl(F) = 0. Thus for piecewise—smooth
closed curves C we have

//CF- dr://5 curl(F) - dS =0,

where S is any smooth orientable surface with 0S = C.
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