MTHSC 206 Section 17.8 – Stokes' Theorem

Kevin James

Kevin James MTHSC 206 Section 17.8 – Stokes' Theorem

• 3 >

A ■

GOAL

We wish to generalize Green's theorem to surfaces. That is we wish to relate the integral of a function over a surface to the line integral of some function around the boundary.

向下 イヨト イヨト

Goal

We wish to generalize Green's theorem to surfaces. That is we wish to relate the integral of a function over a surface to the line integral of some function around the boundary.

INDUCED ORIENTATION

Given a smooth orientable surface S and an orientation (-i.e. a continuous choice of unit normal on S), we define the orientation on the boundary ∂S of S to be such that if you walk around C in the positive direction with your head pointing in the direction of the unit normal of S, then then the surface will remain on your left.

回 と く ヨ と く ヨ と

THEOREM (STOKES)

Let S be an oriented piecewise-smooth surface that is bounded by a simple, closed, piecewise-smooth boundary curve ∂S with orientation induced form S. Let F be a vector field whose components have continuous partials on an open region of \mathbb{R}^3 that contains S. Then

$$\int \int_C F \cdot dr = \int \int_S curl(F) \cdot d\mathbb{S}$$

EXAMPLE

Evaluate $\int_C F \cdot dr$ where $F(x, y, z) = [-y^2, x, z^2]$ and C is the curve of intersection of the plane y + z = 2 and the cylinder $x^2 + y^2 = 1$.

ヘロン 人間 とくほと くほとう

3

EXAMPLE

Evaluate $\int_C F \cdot dr$ where $F(x, y, z) = [-y^2, x, z^2]$ and C is the curve of intersection of the plane y + z = 2 and the cylinder $x^2 + y^2 = 1$.

EXAMPLE

Use Stokes' Theorem to compute the integral $\int \int_S \operatorname{curl}(F) \cdot dS$, where F = [xz, yz, xy] and S is the part of the sphere of radius 2 lying inside the cylinder $x^2 + y^2 = 1$ and above the *xy*-plane.

(1日) (1日) (日)

Note

Note that if S_1 and S_2 are two orientable piecewise-smooth surfaces with the same boundary C which satisfies the hypothesis of Stokes' theorem, then

$$\int \int_{S_1} \operatorname{curl}(F) \, \mathrm{d}\mathbb{S} = \int \int_C F \cdot \, \mathrm{d}\mathbf{r} = \int \int_{S_2} \operatorname{curl}(F) \cdot \, \mathrm{d}\mathbb{S}.$$

A B K A B K

Note

Note that if S_1 and S_2 are two orientable piecewise-smooth surfaces with the same boundary C which satisfies the hypothesis of Stokes' theorem, then

$$\int \int_{S_1} \operatorname{curl}(F) \, \mathrm{d}\mathbb{S} = \int \int_C F \cdot \, \mathrm{d}\mathbf{r} = \int \int_{S_2} \operatorname{curl}(F) \cdot \, \mathrm{d}\mathbb{S}.$$

Note

If F is conservative then curl(F) = 0. Thus for piecewise-smooth closed curves C we have

$$\int \int_{C} F \cdot d\mathbf{r} = \int \int_{S} \operatorname{curl}(F) \cdot d\mathbb{S} = 0,$$

where S is any smooth orientable surface with $\partial S = C$.