MTHSC 206 SECTION 17.9 – THE DIVERGENCE THEOREM

Kevin James

DEFINITION

We say that a solid region in \mathbb{R}^3 is a <u>simple solid region</u> if it is of type 1, type 2 and type 3 (see 16.6).

DEFINITION

We say that a solid region in \mathbb{R}^3 is a <u>simple solid region</u> if it is of type 1, type 2 and type 3 (see 16.6).

THE DIVERGENCE THEOREM

Let E be a simple solid region and let $S=\partial E$ be the boundary of E with positive orientation. Let F=[P,Q,R] be a vector field whose components have continuous partials on an open region containing E. Then

$$\iint_{S} F \cdot dS = \iint_{F} \operatorname{div}(F) dV$$

EXAMPLE

Find the flux of the vector field F(x, y, z) = [z, y, x] over the unit sphere $x^2 + y^2 + z^2 = 1$.

EXAMPLE

Find the flux of the vector field F(x, y, z) = [z, y, x] over the unit sphere $x^2 + y^2 + z^2 = 1$.

EXAMPLE

Evalueate $\int \int_S F \cdot dS$, where $F(x, y, z) = [xy, y^2 + e^{xz^2}, \sin(xy)]$ and S is the surface of the region E bounded by the parabolic cylinder $z = 1 - x^2$, the xy-plane, the xz-plane and the plane y + z = 2.

Note

We can apply the divergence theorem to other regions as well.

1 If $E = E_1 \cup E_2 \cup \cdots \cup E_k$ is the union of a finite number of simple solids, then the divergence theorem will still hold for E.

Note

We can apply the divergence theorem to other regions as well.

- **1** If $E = E_1 \cup E_2 \cup \cdots \cup E_k$ is the union of a finite number of simple solids, then the divergence theorem will still hold for E.
- 2 Suppose that S_1 is a closed surface lying inside the closed surface S_2 and the E is the region between the two. Then,

$$\int \int \int_{E} \ \text{div}(F) \ \text{dV} = \int \int_{S_2} F \cdot \ \text{dS} - \int \int_{S_1} F \cdot \ \text{dS}$$