MTHSC 3110 Section 1.5 – Solution sets of linear equations

Kevin James

DEFINITION

A system of linear equations is called *homogeneous* if it can be written as $A\vec{x} = \vec{0}$.

DEFINITION

A system of linear equations is called *homogeneous* if it can be written as $A\vec{x} = \vec{0}$.

Note

 $\vec{x} = \vec{0}$ is always solution to $A\vec{x} = \vec{0}$. It is called the *trivial solution*.

The homogeneous equation $A\vec{x} = \vec{0}$ has a non-trivial solution if and only if it has free variables.

The homogeneous equation $A\vec{x} = \vec{0}$ has a non-trivial solution if and only if it has free variables.

Proof.

 (\Rightarrow) : Suppose that $A\vec{x} = \vec{0}$ has a nontrivial solution

The homogeneous equation $A\vec{x} = \vec{0}$ has a non-trivial solution if and only if it has free variables.

PROOF.

(\Rightarrow): Suppose that $A\vec{x} = \vec{0}$ has a nontrivial solution Then we have at least two solutions (-i.e. The trivial one and at least one other).

The homogeneous equation $A\vec{x} = \vec{0}$ has a non-trivial solution if and only if it has free variables.

Proof.

(\Rightarrow): Suppose that $A\vec{x} = \vec{0}$ has a nontrivial solution Then we have at least two solutions (-i.e. The trivial one and at least one other).

Thus we must have an infinite number of solutions which requires a free variable.

The homogeneous equation $A\vec{x} = \vec{0}$ has a non-trivial solution if and only if it has free variables.

PROOF.

(\Rightarrow): Suppose that $A\vec{x}=\vec{0}$ has a nontrivial solution Then we have at least two solutions (-i.e. The trivial one and at least one other).

Thus we must have an infinite number of solutions which requires a free variable.

(\Leftarrow): Now suppose that when we row reduce the augmented matrix $[A:\vec{0}]$ that we have a free variable.

The homogeneous equation $A\vec{x} = \vec{0}$ has a non-trivial solution if and only if it has free variables.

PROOF.

(\Rightarrow): Suppose that $A\vec{x}=\vec{0}$ has a nontrivial solution Then we have at least two solutions (-i.e. The trivial one and at least one other).

Thus we must have an infinite number of solutions which requires a free variable.

(\Leftarrow): Now suppose that when we row reduce the augmented matrix [$A:\vec{0}$] that we have a free variable.

Since we already know that we have a solution (the trivial one), and that we have a free variable, we must have infinitely many solutions.

The homogeneous equation $A\vec{x} = \vec{0}$ has a non-trivial solution if and only if it has free variables.

Proof.

(\Rightarrow): Suppose that $A\vec{x} = \vec{0}$ has a nontrivial solution Then we have at least two solutions (-i.e. The trivial one and at least one other).

Thus we must have an infinite number of solutions which requires a free variable.

(\Leftarrow): Now suppose that when we row reduce the augmented matrix $[A:\vec{0}]$ that we have a free variable.

Since we already know that we have a solution (the trivial one), and that we have a free variable, we must have infinitely many solutions.

Thus we have nontrivial solutions.

EXERCISE

1 Determine if the following homogeneous system has non-trivial solutions:

$$\begin{cases}
2x_1 + 3x_2 + x_3 = 0 \\
5x_2 - x_3 = 0 \\
-x_1 + x_2 - x_3 = 0
\end{cases}$$

Exercise

① Determine if the following homogeneous system has non-trivial solutions:

$$\begin{cases}
2x_1 + 3x_2 + x_3 = 0 \\
5x_2 - x_3 = 0 \\
-x_1 + x_2 - x_3 = 0
\end{cases}$$

Describe the solution set.

Note

The solution set of $A\vec{x} = \vec{0}$ can always be written as $\mathrm{Span}(\vec{v_1}, \ldots, \vec{v_p})$ for some vectors $\vec{v_1}, \ldots, \vec{v_p}$.

Note

The solution set of $A\vec{x} = \vec{0}$ can always be written as $\text{Span}(\vec{v}_1, \dots, \vec{v}_p)$ for some vectors $\vec{v}_1, \dots, \vec{v}_p$.

DEFINITION

An equation of the form

$$\vec{x} = s_1 \vec{v}_1 + s_2 \vec{v}_2 + \cdots + s_k \vec{v}_k$$

is said to be in vector parametric form.

EXAMPLE

Describe the solution sets of $A\vec{x} = \vec{0}$ and $A\vec{x} = \vec{b}$ where

$$A = \begin{pmatrix} 3 & 5 & -4 \\ -3 & -2 & 4 \\ 6 & 1 & -8 \end{pmatrix} \quad \text{and} \quad \vec{b} = \begin{pmatrix} 7 \\ -1 \\ -4 \end{pmatrix}$$

THEOREM

Suppose that the equation $A\vec{x} = \vec{b}$ has a solution \vec{p} . Then all solutions to the equation have the form

$$\vec{w} = \vec{p} + \vec{v}_h$$

where \vec{v}_h is a solution to the corresponding homogeneous equation $A\vec{x} = \vec{0}$.

THEOREM

Suppose that the equation $A\vec{x} = \vec{b}$ has a solution \vec{p} . Then all solutions to the equation have the form

$$\vec{w} = \vec{p} + \vec{v}_h$$

where \vec{v}_h is a solution to the corresponding homogeneous equation $A\vec{x} = \vec{0}$.

Note

That is, if \vec{p} is any solution to $A\vec{x} = \vec{b}$, and the solution set of $A\vec{x} = \vec{0}$ is $Span(\vec{v}_1, \dots, \vec{v}_k)$, then the solution set of $A\vec{x} = \vec{b}$ is

$$\vec{p} + \mathsf{Span}(\vec{v}_1, \ldots, \vec{v}_k)$$