MTHSC 3110 SECTION 1.7 – LINEAR INDEPENDENCE

Kevin James

DEFINITION

An indexed set of vectors $\{\vec{v}_1, \dots, \vec{v}_p\}$ in \mathbb{R}^n is <u>linearly independent</u> if the vector equation

$$x_1\vec{v}_1+\cdots+x_p\vec{v}_p=\vec{0}$$

has only the trivial solution $(\vec{x} = \vec{0})$.

Otherwise if there exist $c_1,\ldots,c_p\in\mathbb{R}$ not all zero, so that

$$c_1\vec{v}_1+\cdots+c_p\vec{v}_p=\vec{0}$$

then the set is linearly dependent.

DEFINITION

An indexed set of vectors $\{\vec{v}_1, \dots, \vec{v}_p\}$ in \mathbb{R}^n is <u>linearly independent</u> if the vector equation

$$x_1\vec{v}_1+\cdots+x_p\vec{v}_p=\vec{0}$$

has only the trivial solution $(\vec{x} = \vec{0})$.

Otherwise if there exist $c_1,\ldots,c_p\in\mathbb{R}$ not all zero, so that

$$c_1\vec{v}_1+\cdots+c_p\vec{v}_p=\vec{0}$$

then the set is linearly dependent.

EXAMPLE

Are the vectors $\vec{v}_1=\left(\begin{array}{c}1\\2\\3\end{array}\right)$, $\vec{v}_2=\left(\begin{array}{c}-1\\1\\5\end{array}\right)$, $\vec{v}_3=\left(\begin{array}{c}-1\\7\\21\end{array}\right)$,

linearly independent? If not, find a dependence.

The columns of the matrix A are linearly independent if and only if the equation $A\vec{x} = \vec{0}$ has only the trivial solution.

The columns of the matrix A are linearly independent if and only if the equation $A\vec{x} = \vec{0}$ has only the trivial solution.

EXAMPLE

Are the columns of
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 2 & 2 \\ 5 & 3 & 3 \end{pmatrix}$$
 linearly idependent?

- **1** A set containing a single vector \vec{v} is linearly independent if and only if $\vec{v} \neq 0$.
- 2 A set containing two vectors is linearly independent if and only if neither vector is a multiple of the other.

- **1** A set containing a single vector \vec{v} is linearly independent if and only if $\vec{v} \neq 0$.
- A set containing two vectors is linearly independent if and only if neither vector is a multiple of the other.

Proof.

An indexed set $S = \{\vec{v}_1, \dots, \vec{v}_p\}$ is linearly dependent if and only if one of the vectors in S is a linear combination of the others. In fact, S is linearly dependent if and only if either $\vec{v}_1 = \vec{0}$, or there is a j so that \vec{v}_i is a linear combination of $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_{i-1}$.

An indexed set $S = \{\vec{v}_1, \ldots, \vec{v}_p\}$ is linearly dependent if and only if one of the vectors in S is a linear combination of the others. In fact, S is linearly dependent if and only if either $\vec{v}_1 = \vec{0}$, or there is a j so that \vec{v}_j is a linear combination of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_{j-1}$.

Proof.

EXAMPLE

Let
$$\vec{u} = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$$
, $\vec{v} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$. Describe $\mathsf{Span}(\vec{u}, \vec{v})$. For this particular \vec{u}, \vec{v} we have $\vec{w} \in \mathsf{Span}(\vec{u}, \vec{v})$ if and only if $\{\vec{u}, \vec{v}, \vec{w}\}$ is linearly dependent. Explain.

If a set contains more vectors than there are entries (that is, rows) in the vectors, then it is linearly dependent.

If $\vec{0} \in S = \{\vec{v}_1, \dots, \vec{v}_p\}$ then S is linearly dependent.

If $\vec{0} \in S = \{\vec{v}_1, \dots, \vec{v}_p\}$ then S is linearly dependent.

Proof.

Testing for linear dependence

To test whether vectors $\vec{v}_1, \vec{v}_2, \dots \vec{v}_k$ are linearly dependent, construct the matrix $A = [\vec{v}_1, \vec{v}_2, \dots \vec{v}_k]$ having them as columns. Perform row reduction on the matrix.

If every column contains a pivot, then the only solution to $A\vec{x}=\vec{0}$ is $\vec{x}=\vec{0}$, and hence the vectors are linearly independent, since then the only solution to

$$x_1\vec{v}_1 + x_2\vec{v}_2 + \cdots + x_k\vec{v}_k = \vec{0}$$

is $x_1 = x_2 = \cdots = x_k = 0$.

On the other hand, if there is a column without a pivot, then there are infinitely many solutions to the equation $A\vec{x} = \vec{0}$ (since there is a free variable in the general solution to the equation): pick a non-zero solution: it will correspond to a non-trivial solution to

$$x_1\vec{v}_1 + x_2\vec{v}_2 + \cdots + x_k\vec{v}_k = \vec{0}$$

and hence the vectors are linearly dependent.