MTHSC 3110 Section 1.8 – Linear Transformations

Kevin James

Kevin James MTHSC 3110 Section 1.8 – Linear Transformations

э

< ∃⇒

We are going to talk about special kinds of functions from \mathbb{R}^n to \mathbb{R}^m (note: *n* comes before *m* here!) First: what is a function?

DEFINITION

We write $f : A \longrightarrow B$ to denote that f is a <u>function</u> from the set A to the set B. What this means is that f is a rule, which assigns, for each element $a \in A$, a unique element $b \in B$ so that b = f(a). We refer to A as the <u>domain</u> of f, and to B as the <u>co-domain</u>. The set

$$\{f(a): a \in A\}$$

of values taken by the function is called the image or range of f.

We will restrict our attention to functions which interact nicely with vector addition and scalar multiplication.

DEFINITION

A linear transformation from \mathbb{R}^n to \mathbb{R}^m is a function $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ which satisfies the following two properties: whenever $\vec{u}, \vec{v} \in \mathbb{R}^n$ and $c \in \mathbb{R}$, then 1 $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$ 2 $T(c\vec{u}) = cT(\vec{u})$.

Note

If A is a $m \times n$ matrix, then we can define $T : \mathbb{R}^n \to \mathbb{R}^m$ by $T(\vec{x}) = A\vec{x}$. We have already proved that $T(\vec{x} + \vec{y}) = A(\vec{x} + \vec{y}) = A\vec{x} + A\vec{y} = T(\vec{x}) + T(\vec{y})$ and $T(\alpha \vec{x}) = A(\alpha \vec{x}) = \alpha A \vec{x} = \alpha T(\vec{x})$ for any $\alpha \in \mathbb{R}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let

$$A = \left(\begin{array}{rrr} 1 & 2\\ 2 & 3\\ 5 & -1 \end{array}\right)$$

Define $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ by $T(\vec{x}) = A\vec{x}$. **1** $T\left(\begin{pmatrix} 1\\1 \end{pmatrix}\right) =$

2 Find all
$$\vec{x} \in \mathbb{R}^2$$
 so that $T(\vec{x}) = \begin{pmatrix} 3 \\ 5 \\ 4 \end{pmatrix}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Let

$$A = \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

Then $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ given by $T(\vec{x}) = A\vec{x}$ is called a projection:

$$T\left(\left(\begin{array}{c}x_1\\x_2\\x_3\end{array}\right)\right) = \left(\begin{array}{ccc}1&0&0\\0&1&0\\0&0&0\end{array}\right) \cdot \left(\begin{array}{c}x_1\\x_2\\x_3\end{array}\right) = \left(\begin{array}{c}\end{array}\right)$$

Consider the map $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(\vec{x}) = A\vec{x}$ where $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$. This is an example of a <u>shear transformation</u>. Draw the image of the box $[0, 1] \times [0, 1]$ under T to see why.

Note

If T is a linear transformation, then $T(\vec{0} = \vec{0}.$ $T(c\vec{u} + d\vec{v}) = cT(\vec{u}) + dT(\vec{v}).$ $T\left(\sum_{i=1}^{p} c_i \vec{v}_i\right) = \sum_{i=1}^{p} c_i T(\vec{v}_i)$

・ 同 ト ・ 三 ト ・ 三 ト

Define a map $T_r : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ by $T\vec{x} = r\vec{x}$. If 0 < r < 1, the map is called a *contraction*. If r > 1 it is called a dilation. Show that T_r is a linear transformation.

▶ < 문 ▶ < E >