MTHSC 3110 Section 1.9 – The Matrix of a Linear Transformation

Kevin James

RECALL

A function $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is called a linear transformation if for every $\vec{u}, \vec{v} \in \mathbb{R}^n$ and $c \in \mathbb{R}$,

- $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v}).$
- $T(c\vec{u}) = cT(\vec{u})$

EXAMPLE

Suppose $\mathcal{T}:\mathbb{R}^2\longrightarrow\mathbb{R}^3$ is a linear transformation, and that we know

$$\mathcal{T}(ec{e_1}) = \left(egin{array}{c} 1 \ 1 \ 1 \end{array}
ight) \qquad ext{and} \qquad \mathcal{T}(ec{e_2}) = \left(egin{array}{c} 1 \ 2 \ 3 \end{array}
ight)$$

where
$$\vec{e_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $\vec{e_2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Give a complete description of T .

Definition

Let $\vec{e_j} \in \mathbb{R}^n$ denote the vector having a 1 in the j^{th} row, and zeros elsewhere.

THEOREM

Let $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation. Then there exists a unique matrix A so that for every $\vec{x} \in \mathbb{R}^n$,

$$T(\vec{x}) = A\vec{x}$$
.

In fact, A is the $m \times n$ matrix whose j^{th} column is $T(\vec{e_j})$.

-i.e.

$$A = \left(egin{array}{cccc} | & | & | & | \\ T(ec{e}_1) & T(ec{e}_2) & \dots & T(ec{e}_n) \\ | & | & | \end{array}
ight).$$

EXAMPLE

Find the matrix representing the transformation $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ given by $T(\vec{x}) = 3\vec{x}$.

DEFINITION

- A linear transformation $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is said to be <u>onto</u> \mathbb{R}^m if every $\vec{b} \in \mathbb{R}^m$ is the image of at least one $\vec{x} \in \mathbb{R}^n$. (T is onto provided that $\forall \ \vec{b} \in \mathbb{R}^m$, $\exists \ \vec{x} \in \mathbb{R}^n$ so that $T(\vec{x}) = \vec{b}$.)
- A linear transformation $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is said to be <u>one-to-one</u> (or 1-1) if every $\vec{b} \in \mathbb{R}^m$ is the image of at most one $\vec{x} \in \mathbb{R}^n$. (That is, if $T(\vec{x}) = T(\vec{y})$ then $\vec{x} = \vec{y}$.)

EXAMPLE

Suppose that T is the linear transformation with matrix

$$\left(\begin{array}{cccc}
1 & 2 & 5 & 6 \\
0 & 1 & 3 & 4 \\
0 & 0 & 0 & 2
\end{array}\right)$$

- ① If $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$, what are m and n?
- 2 Is T 1-1? What do you have to check?
- 3 Is T onto? What do you have to check?

THEOREM

A linear transformation $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is 1-1 if and only if $T\vec{x} = \vec{0}$ has only the trivial solution.

Proof.

THEOREM

Let $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation and let A be its matrix.

- **1** T is onto if and only if the span of the columns of A is all of \mathbb{R}^m .
- 2 T is 1-1 if and only if the columns of A are linearly independent.

Proof.

DETECTING 1-1 AND ONTO CONDITIONS

Note

As a consequence of this theorem we can check whether ${\cal T}$ is 1-1 or onto by row-reducing its matrix ${\cal A}$.

If there is a pivot in every row, then T is onto. if there is a pivot in every column, then T is 1-1.

EXAMPLE

Let
$$T\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 + x_2 \\ 5x_1 + 7x_2 \\ x_1 + 3x_2 \end{pmatrix}$$
. Is T 1-1 and/or onto?