MTHSC 3110 Section 2.1 – Matrix Operations

Kevin James

Kevin James MTHSC 3110 Section 2.1 – Matrix Operations

★ E ► < E ►</p>

NOTATION

Let A be an $m \times n$ matrix, that is, m rows and n columns. We'll refer to the entries of A by their row and column indices. The entry in the i^{th} row and j^{th} column is denoted by a_{ij} , and is called the (i, j)-entry of A.

(a ₁₁	 a_{1j}		a_{1n}
	÷	÷		÷
	a_{i1}	 a _{ij}		a _{in}
	÷	÷		:
ĺ	a _{m1}	 a _{mj}	•••	a _{mn})

• • = • • = •

NOTATION

The columns of A are vectors in \mathbb{R}^m , and are denoted in the book by $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ and in my notes by $\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n$. In order to focus attention on the columns we write

$$A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \dots & \vec{a}_n \end{bmatrix}$$

< ロ > < 同 > < 三 > < 三 >

DEFINITION

Suppose that $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix}$ and $B = \begin{bmatrix} \vec{b_1} & \vec{b_2} & \dots & \vec{b_n} \end{bmatrix}$ are both $m \times n$ matrices. Then we define their sum as

$$\begin{array}{rcl} A+B &=& [\vec{a_1} & \vec{a_2} & \dots & \vec{a_n}] + [\vec{b_1} & \vec{b_2} & \dots & \vec{b_n}] \\ & & =& [(\vec{a_1}+\vec{b_1}) & (\vec{a_2}+\vec{b_2}) & \dots & (\vec{a_n}+\vec{b_n})] \end{array}$$

イロト イヨト イヨト イヨト

Definition

Suppose that $A = [\vec{a_1} \quad \vec{a_2} \quad \dots \quad \vec{a_n}]$ and $B = [\vec{b_1} \quad \vec{b_2} \quad \dots \quad \vec{b_n}]$ are both $m \times n$ matrices. Then we define their sum as

$$A + B = [\vec{a}_1 \quad \vec{a}_2 \quad \dots \quad \vec{a}_n] + [\vec{b}_1 \quad \vec{b}_2 \quad \dots \quad \vec{b}_n] \\ = [(\vec{a}_1 + \vec{b}_1) \quad (\vec{a}_2 + \vec{b}_2) \quad \dots \quad (\vec{a}_n + \vec{b}_n)]$$

ALTERNATIVE DEFINITION

Given two $m \times n$ matrices A and B, we can define their sum C = A + B as the $m \times n$ matrix whose entries are $c_{ij} = a_{ij} + b_{ij}$.

(1日) (1日) (日)

EXAMPLE

$$\begin{pmatrix} 1 & 2 \\ 3 & -1 \\ 2 & 4 \end{pmatrix} + \begin{pmatrix} -1 & 3 \\ 2 & -1 \\ -3 & 4 \end{pmatrix} = \begin{pmatrix} & & \\ & & \end{pmatrix}$$

DEFINITION

We denote by 0 the matrix all of whose elements are zero.

回 と く ヨ と く ヨ と …

Э

DEFINITION

We denote by 0 the matrix all of whose elements are zero.

Theorem

Let A, B, C be matrices of the same size, and let r, s be scalars. Then

通 ト イ ヨ ト イ ヨ ト

Definition

We denote by 0 the matrix all of whose elements are zero.

Theorem

Let A, B, C be matrices of the same size, and let r, s be scalars. Then

Note

This is very similar to the corresponding theorem for vector addition.

Composition of Functions

Recall

If f and g are functions and the image of g is contained in the domain of f, then we define the composition of f and g by

 $f \circ g(x) = f(g(x))$

向下 イヨト イヨト

Composition of Functions

Recall

If f and g are functions and the image of g is contained in the domain of f, then we define the composition of f and g by

$$f \circ g(x) = f(g(x))$$

EXAMPLE

Suppose that $f,g:\mathbb{R}\to\mathbb{R}$ are defined by $f(y)=y^2$ and $g(x)=\sin(x),$

(4月) トイヨト イヨト

Composition of Functions

Recall

If f and g are functions and the image of g is contained in the domain of f, then we define the composition of f and g by

 $f \circ g(x) = f(g(x))$

EXAMPLE

Suppose that $f, g : \mathbb{R} \to \mathbb{R}$ are defined by $f(y) = y^2$ and $g(x) = \sin(x)$, then $f \circ g(x) = f(g(x)) = (\sin(x))^2$

・ 同 ト ・ ヨ ト ・ ヨ ト

Composition of Linear Transformations

Note

向下 イヨト イヨト

Composition of Linear Transformations

Note

- **3** We will consider linear transformations

$$\mathbb{R}^p \xrightarrow{U} \mathbb{R}^n \xrightarrow{T} \mathbb{R}^m,$$

where $U : \mathbb{R}^p \longrightarrow \mathbb{R}^n$, and $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$. So, since $U(\vec{x})$ is in the domain of T, we can compute $T(U(\vec{x}))$.

(4月) トイヨト イヨト

Fact

The composition of two linear transformations is again a linear transformation and thus can be written as multiplication by a matrix.

(人間) とうぼう くぼう

Suppose that

$$\mathbb{R}^p \xrightarrow{U} \mathbb{R}^n \xrightarrow{T} \mathbb{R}^m.$$

Let *B* be the $n \times p$ matrix corresponding to the transformation *U*.

Suppose that

$$\mathbb{R}^p \xrightarrow{U} \mathbb{R}^n \xrightarrow{T} \mathbb{R}^m.$$

Let *B* be the $n \times p$ matrix corresponding to the transformation *U*. Let *A* be the $m \times n$ matrix corresponding to the transformation *T*.

Suppose that

$$\mathbb{R}^p \xrightarrow{U} \mathbb{R}^n \xrightarrow{T} \mathbb{R}^m.$$

Let *B* be the $n \times p$ matrix corresponding to the transformation *U*. Let *A* be the $m \times n$ matrix corresponding to the transformation *T*. (-i.e. $U(\vec{x}) = B\vec{x}$, and $T(\vec{v}) = A\vec{v}$).

4 B K 4 B K

Suppose that

$$\mathbb{R}^p \xrightarrow{U} \mathbb{R}^n \xrightarrow{T} \mathbb{R}^m.$$

Let *B* be the $n \times p$ matrix corresponding to the transformation *U*. Let *A* be the $m \times n$ matrix corresponding to the transformation *T*. (-i.e. $U(\vec{x}) = B\vec{x}$, and $T(\vec{v}) = A\vec{v}$). Then we have

 $T \circ U(\vec{x}) = T(U(\vec{x})) =$

Suppose that

$$\mathbb{R}^p \xrightarrow{U} \mathbb{R}^n \xrightarrow{T} \mathbb{R}^m.$$

Let B be the $n \times p$ matrix corresponding to the transformation U. Let A be the $m \times n$ matrix corresponding to the transformation T. (-i.e. $U(\vec{x}) = B\vec{x}$, and $T(\vec{v}) = A\vec{v}$). Then we have

$$T \circ U(\vec{x}) = T(U(\vec{x})) = A(B\vec{x}) =$$

Suppose that

$$\mathbb{R}^p \xrightarrow{U} \mathbb{R}^n \xrightarrow{T} \mathbb{R}^m.$$

Let B be the $n \times p$ matrix corresponding to the transformation U. Let A be the $m \times n$ matrix corresponding to the transformation T. (-i.e. $U(\vec{x}) = B\vec{x}$, and $T(\vec{v}) = A\vec{v}$). Then we have

$$T \circ U(\vec{x}) = T(U(\vec{x})) = A(B\vec{x}) = A(x_1\vec{b}_1 + x_2\vec{b}_2 + \dots + x_p\vec{b}_p)$$

Suppose that

$$\mathbb{R}^p \xrightarrow{U} \mathbb{R}^n \xrightarrow{T} \mathbb{R}^m.$$

Let B be the $n \times p$ matrix corresponding to the transformation U. Let A be the $m \times n$ matrix corresponding to the transformation T. (-i.e. $U(\vec{x}) = B\vec{x}$, and $T(\vec{v}) = A\vec{v}$). Then we have

$$T \circ U(\vec{x}) = T(U(\vec{x})) = A(B\vec{x}) = A(x_1\vec{b}_1 + x_2\vec{b}_2 + \dots + x_p\vec{b}_p)$$

= $Ax_1\vec{b}_1 + Ax_2\vec{b}_2 + \dots + Ax_p\vec{b}_p$

Suppose that

$$\mathbb{R}^p \xrightarrow{U} \mathbb{R}^n \xrightarrow{T} \mathbb{R}^m.$$

Let B be the $n \times p$ matrix corresponding to the transformation U. Let A be the $m \times n$ matrix corresponding to the transformation T. (-i.e. $U(\vec{x}) = B\vec{x}$, and $T(\vec{v}) = A\vec{v}$). Then we have

$$T \circ U(\vec{x}) = T(U(\vec{x})) = A(B\vec{x}) = A(x_1\vec{b}_1 + x_2\vec{b}_2 + \dots + x_p\vec{b}_p)$$

= $Ax_1\vec{b}_1 + Ax_2\vec{b}_2 + \dots + Ax_p\vec{b}_p$
= $x_1A\vec{b}_1 + x_2A\vec{b}_2 + \dots + x_pA\vec{b}_p$

(E) (E)

Suppose that

$$\mathbb{R}^p \xrightarrow{U} \mathbb{R}^n \xrightarrow{T} \mathbb{R}^m.$$

Let B be the $n \times p$ matrix corresponding to the transformation U. Let A be the $m \times n$ matrix corresponding to the transformation T. (-i.e. $U(\vec{x}) = B\vec{x}$, and $T(\vec{v}) = A\vec{v}$). Then we have

$$T \circ U(\vec{x}) = T(U(\vec{x})) = A(B\vec{x}) = A(x_1\vec{b}_1 + x_2\vec{b}_2 + \dots + x_p\vec{b}_p)$$

= $Ax_1\vec{b}_1 + Ax_2\vec{b}_2 + \dots + Ax_p\vec{b}_p$
= $x_1A\vec{b}_1 + x_2A\vec{b}_2 + \dots + x_pA\vec{b}_p$
= $[A\vec{b}_1 \quad A\vec{b}_2 \quad \dots \quad A\vec{b}_p] \vec{x}$

(E) (E)

Suppose that

$$\mathbb{R}^p \xrightarrow{U} \mathbb{R}^n \xrightarrow{T} \mathbb{R}^m.$$

Let B be the $n \times p$ matrix corresponding to the transformation U. Let A be the $m \times n$ matrix corresponding to the transformation T. (-i.e. $U(\vec{x}) = B\vec{x}$, and $T(\vec{v}) = A\vec{v}$). Then we have

$$T \circ U(\vec{x}) = T(U(\vec{x})) = A(B\vec{x}) = A(x_1\vec{b}_1 + x_2\vec{b}_2 + \dots + x_p\vec{b}_p)$$

= $Ax_1\vec{b}_1 + Ax_2\vec{b}_2 + \dots + Ax_p\vec{b}_p$
= $x_1A\vec{b}_1 + x_2A\vec{b}_2 + \dots + x_pA\vec{b}_p$
= $[A\vec{b}_1 \quad A\vec{b}_2 \quad \dots \quad A\vec{b}_p] \vec{x}$

Thus, $T \circ U(\vec{x}) = [A\vec{b}_1 \quad A\vec{b}_2 \quad \dots \quad A\vec{b}_{\rho}] \vec{x}$.

MATRIX MULTIPLICATION DEFINED

DEFINITION

If A is an $m \times n$ matrix, and if $B = [\vec{b}_1, \vec{b}_2, \dots, \vec{b}_p]$ is a $n \times p$ matrix, then the matrix product AB is the following $m \times p$ matrix.

$$AB = \begin{bmatrix} A\vec{b}_1 & A\vec{b}_2 & \dots & A\vec{b}_p \end{bmatrix}$$

(4) (3) (4) (4) (4)

MATRIX MULTIPLICATION DEFINED

DEFINITION

If A is an $m \times n$ matrix, and if $B = [\vec{b}_1, \vec{b}_2, \dots, \vec{b}_p]$ is a $n \times p$ matrix, then the matrix product AB is the following $m \times p$ matrix.

$$AB = \begin{bmatrix} A\vec{b}_1 & A\vec{b}_2 & \dots & A\vec{b}_p \end{bmatrix}$$

EXAMPLE

Let
$$A = \begin{pmatrix} 1 & 2 \\ -2 & 3 \end{pmatrix}$$
 and let $B = \begin{pmatrix} 3 & -1 & 6 \\ 7 & 5 & 3 \end{pmatrix}$. Compute AB .

・ 同 ト ・ ヨ ト ・ ヨ ト

ROW-COLUMN RULE

If A is $m \times n$ and if B is $n \times p$ the (i, j)-entry of AB is given by

$$(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

(E) < (E)</p>

ROW-COLUMN RULE

If A is $m \times n$ and if B is $n \times p$ the (i, j)-entry of AB is given by

$$(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Note

 $\operatorname{Row}_i(AB) = \operatorname{Row}_i(A) \cdot B.$

向下 イヨト イヨト

DEFINITION

We define the $m \times m$ identity matrix as $I_m = [\vec{e_1}, \vec{e_2}, \dots \vec{e_m}] = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}.$

- 4 回 2 - 4 □ 2 - 4 □

3

DEFINITION

We define the $m \times m$ identity matrix as

$$U_m = [\vec{e}_1, \vec{e}_2, \dots \vec{e}_m] = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}.$$

Theorem

With A, B and C appropriately sized matrices and r a scalar

$$(AB)C = A(BC)$$

$$(B+C)A = BA + CA$$

 $\bullet I_m A = A = A I_n$

イロン 不同 とうほう 不同 とう

Э

EXAMPLE

Let
$$A = \begin{pmatrix} 1 & 2 \\ 5 & 10 \end{pmatrix}$$
.
Let $B = \begin{pmatrix} 2 & 6 \\ -1 & -3 \end{pmatrix}$.
Compute *AB*, *BA*, and $A \cdot 0$

프 🖌 🛪 프 🕨

EXAMPLE

Let
$$A = \begin{pmatrix} 1 & 2 \\ 5 & 10 \end{pmatrix}$$
.
Let $B = \begin{pmatrix} 2 & 6 \\ -1 & -3 \end{pmatrix}$.
Compute *AB*, *BA*, and $A \cdot C$

Note

1 It is **NOT** in general true that AB = BA.

2 It is **NOT** in general true when AC = AB that C = B.

向下 イヨト イヨト

DEFINITION

We define non negative powers of an $m \times m$ matrix as follows.

$$A^0 = I_m, \qquad A^1 = A, \qquad A^n = A^{n-1}A \qquad \text{for } n > 1.$$

イロト イヨト イヨト イヨト

DEFINITION

We define non negative powers of an $m \times m$ matrix as follows.

$$A^0 = I_m, \qquad A^1 = A, \qquad A^n = A^{n-1}A \qquad \text{for } n > 1.$$

EXAMPLE

Let
$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
. Compute A^3 .

イロト イヨト イヨト イヨト

DEFINITION

The transpose of a $m \times n$ matrix A is the matrix A^T having (i, j)-entry a_{ji} . That is,

$$(A^T)_{ij} = a_{ji}.$$

(人間) とうぼう くぼう

DEFINITION

The transpose of a $m \times n$ matrix A is the matrix A^T having (i, j)-entry a_{ji} . That is,

$$(A^T)_{ij} = a_{ji}.$$

EXAMPLE

For example,
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
 has transpose

イロト イヨト イヨト イヨト

DEFINITION

The transpose of a $m \times n$ matrix A is the matrix A^T having (i, j)-entry a_{ji} . That is,

$$(A^T)_{ij} = a_{ji}.$$

EXAMPLE

For example,
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
 has transpose $A^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$.

DEFINITION

The transpose of a $m \times n$ matrix A is the matrix A^T having (i, j)-entry a_{ji} . That is,

$$(A^T)_{ij} = a_{ji}.$$

EXAMPLE

For example,
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
 has transpose $A^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$.

Note

The rows of A become the columns of A^T and vice versa.

イロト イヨト イヨト イヨト

Theorem

Let A and B be matrices whose sizes are appropriate for the following sums and products to be defined

> < 물 > < 물 >

EXAMPLE

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \text{ and } B = \begin{pmatrix} 5 & 1 & -1 \\ 1 & 2 & 2 \end{pmatrix} \text{ then}$$
$$AB = \begin{pmatrix} 7 & 5 & 3 \\ 9 & 11 & 5 \end{pmatrix} \qquad (AB)^T = \begin{pmatrix} 7 & 9 \\ 5 & 11 \\ 3 & 5 \end{pmatrix} = B^T A^T$$

but A^T is 2 × 2 and B^T is 3 × 2, so $A^T B^T$ isn't even defined.

イロト イヨト イヨト イヨト 三日