MTHSC 3110 Section 2.2 – Inverses of Matrices

Kevin James

Kevin James MTHSC 3110 Section 2.2 – Inverses of Matrices

(E)

э

DEFINITION

Suppose that $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is linear. We will say that T is invertible if for every $\vec{b} \in \mathbb{R}^m$ there is exactly one $\vec{x} \in \mathbb{R}^n$ so that $T(\vec{x}) = \vec{b}$.

Note

If T is invertible, this means that T is onto (every equation can be solved: hence $m \le n$) and T is 1-1 (every equation has at most one solution: hence $n \le m$).

Thus n = m and an invertible linear transformation has a matrix which must be square.

QUESTIONS

- 1 Which square matrices are invertible?
- 2 What does it mean for a square matrix to be invertible?

Fact

Suppose that $T : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is an invertible linear transformation: then we can define $S : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ so that $T\vec{x} = \vec{u}$ if and only if $\vec{x} = S(\vec{u})$. Furthermore, for every vector $\vec{x} \in \mathbb{R}^n$, $S(T(\vec{x})) = \vec{x}$, and for every $\vec{u} \in \mathbb{R}^n$, $T(S(\vec{u})) = \vec{u}$.

Fact

It turns out that S must also be linear.

Proof.

We'll assume that $T(\vec{x}) = \vec{u}$ and $T(\vec{y}) = \vec{v}$. Then $S(\vec{u}) = \vec{x}$ and $S(\vec{v}) = \vec{y}$. Note that $S(T(r\vec{x})) = r\vec{x}$, so we get

$$S(r\vec{u}) = S(rT(\vec{x})) = S(T(r\vec{x})) = r\vec{x} = rS(\vec{u})$$

so that S commutes with scalar addition. Likewise,

$$S(\vec{u} + \vec{v}) = S(T(\vec{x}) + T(\vec{y})) = S(T(\vec{x} + \vec{y})) = (\vec{x} + \vec{y}) = S(\vec{u}) + S(\vec{v})$$

so that S commutes with addition. Thus S is linear.

イロト イヨト イヨト イヨト

Note

We see that if T is an invertible linear transformation from \mathbb{R}^n to \mathbb{R}^n , then so is S.

Hence we can represent T by a square matrix A and S by a square matrix B.

Then $S(T(\vec{x})) = \vec{x}$ for all \vec{x} means that $BA\vec{x} = \vec{x}$ for every \vec{x} .

In particular, if C = BA, then we have $C\vec{e_j} = \vec{e_j}$, so that we obtain that C must be the identity matrix I_n .

Similarly, $T(S(\vec{u})) = \vec{u}$ for every \vec{u} , and hence $AB = I_n$ is also the identity matrix.

伺 ト イヨト イヨー

DEFINITION

- **1** An $n \times n$ matrix A is *invertible* if there exists a $n \times n$ matrix B so that $AB = I_n = BA$.
- **2** B is called the *inverse* of A and is denoted by A^{-1} .
- 8 A matrix which is not invertible is said to be singular.

向下 イヨト イヨト

The Speical Case of 2×2 Matrices

DEFINITION

Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. We define (and this only works for 2 × 2 matrices) the determinant of A to be the quantity

$$\det(A) = ad - bc.$$

Theorem

Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Then A is invertible if and only if det(A) is non-zero, in which case

$${\mathcal A}^{-1} = rac{1}{\det({\mathcal A})} \left(egin{array}{cc} d & -b \ -c & a \end{array}
ight).$$

If det(A) = 0 then A is singular.

Theorem

If A is an invertible $m \times m$ matrix, then for every $\vec{b} \in \mathbb{R}^n$, the equation $A\vec{x} = \vec{b}$ has a unique solution, namely $\vec{x} = A^{-1}\vec{b}$.

Proof.

Theorem

- 1 If A is invertible, then so is A^{-1} , and $(A^{-1})^{-1} = A$.
- 2 If A and B are invertible $n \times n$ matrices then so is AB, and $(AB)^{-1} = B^{-1}A^{-1}$.
- **3** If A is invertible, then so is A^T , and $(A^T)^{-1} = (A^{-1})^T$.

Proof.

ELEMENTARY ROW OPERATIONS

Recall

Denoting rows r and s by R_r and R_s , the row operations are:

 $R_r \leftrightarrow R_s$ Interchange rows R_r and R_s of a matrix.

 cR_r For a non-zero $c \in \mathbb{R}$, replace R_r by cR_r .

 $R_r + cR_s$ Replace R_r by $R_r + cR_s$

DEFINITION

An elementary matrix is any $n \times n$ matrix that can be obtained by performing a single elementary row operation to I_n .

・ 同 ト ・ ヨ ト ・ ヨ ト

EXAMPLE

We construct three elementary matrices below.

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 + 2R_3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{3R_1} \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

イロト イヨト イヨト イヨト

Э

EXAMPLE

Multiply the general 3×3 matrix on the left by each of the above matrices.

臣

EXERCISE

For a matrix having 4 rows, write down the elementary matrices which perform the following elementary row operations.

2 3R₂

3 $R_2 + 7R_4$

Exercise

Write down the inverse for each of the elementary matrices above.

Kevin James MTHSC 3110 Section 2.2 – Inverses of Matrices

Note

3 Since each row operation is invertible, each elementary matrix is invertible.

< 注 ▶ < 注 ▶

Theorem

An $n \times n$ matrix A is invertible if and only if $A \sim I_n$, in which case the sequence of elementary row operations which transform A to the identity also transform the identity matrix I_n to A^{-1} .

Note

Thus if
$$A \xrightarrow{\mathcal{R}_1} \xrightarrow{\mathcal{R}_2} \cdots \xrightarrow{\mathcal{R}_k} I_n$$
 then
 $[A: I_n] \xrightarrow{\mathcal{R}_1} \xrightarrow{\mathcal{R}_2} \cdots \xrightarrow{\mathcal{R}_k} [I_n: A^{-1}].$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Proof.

Recall that an $n \times n$ matrix A is invertible if and only if every equation $A\vec{x} = \vec{b}$ has a unique solution.

This is true if and only if the row reduced echelon form of A has a pivot in every row (existence of solution) and column (uniqueness of solution).

Thus A is invertible if and only if the row reduced echelon form of A is I_n .

Now suppose that A is invertible and that $A \xrightarrow{\mathcal{R}_1} \xrightarrow{\mathcal{R}_2} \cdots \xrightarrow{\mathcal{R}_k} I_n$. Suppose also that $I_n \xrightarrow{\mathcal{R}_i} E_i$. Then $A \xrightarrow{\mathcal{R}_1} E_1 A \xrightarrow{\mathcal{R}_2} E_2 E_1 A \rightarrow \cdots \xrightarrow{\mathcal{R}_k} E_k \cdots E_1 A = I_n$. Thus $A = E_1^{-1} E_2^{-1} \cdots E_k^{-1} \Rightarrow A^{-1} = E_k \cdots E_1$.

向下 イヨト イヨト

EXAMPLE

Let
$$A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 3 & 1 \\ 3 & 5 & 1 \end{pmatrix}$$
. Find A^{-1} .

・ロト・日本・日本・日本・日本・日本