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Definition

Suppose that T : Rn −→ Rm is linear. We will say that T is
invertible if for every ~b ∈ Rm there is exactly one ~x ∈ Rn so that
T (~x) = ~b.

Note

If T is invertible, this means that T is onto (every equation can be
solved: hence m ≤ n) and T is 1-1 (every equation has at most
one solution: hence n ≤ m).
Thus n = m and an invertible linear transformation has a matrix
which must be square.

Questions

1 Which square matrices are invertible?

2 What does it mean for a square matrix to be invertible?
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Fact

Suppose that T : Rn −→ Rn is an invertible linear transformation:
then we can define S : Rn −→ Rn so that T~x = ~u if and only if
~x = S(~u). Furthermore, for every vector ~x ∈ Rn, S(T (~x)) = ~x ,
and for every ~u ∈ Rn, T (S(~u)) = ~u.

Fact

It turns out that S must also be linear.
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Proof.

We’ll assume that T (~x) = ~u and T (~y) = ~v . Then S(~u) = ~x and
S(~v) = ~y .
Note that S(T (r~x)) = r~x , so we get

S(r~u) = S(rT (~x)) = S(T (r~x)) = r~x = rS(~u)

so that S commutes with scalar addition.
Likewise,

S(~u+~v) = S(T (~x)+T (~y)) = S(T (~x+~y)) = (~x+~y) = S(~u)+S(~v)

so that S commutes with addition.
Thus S is linear.
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Note

We see that if T is an invertible linear transformation from Rn to
Rn, then so is S .
Hence we can represent T by a square matrix A and S by a square
matrix B.
Then S(T (~x)) = ~x for all ~x means that BA~x = ~x for every ~x .
In particular, if C = BA, then we have C~ej = ~ej , so that we obtain
that C must be the identity matrix In.
Similarly, T (S(~u)) = ~u for every ~u, and hence AB = In is also the
identity matrix.
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Definition

1 An n× n matrix A is invertible if there exists a n× n matrix B
so that AB = In = BA.

2 B is called the inverse of A and is denoted by A−1.

3 A matrix which is not invertible is said to be singular.
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The Speical Case of 2× 2 Matrices

Definition

Let A =

(
a b
c d

)
. We define (and this only works for 2× 2

matrices) the determinant of A to be the quantity

det(A) = ad − bc.

Theorem

Let A =

(
a b
c d

)
. Then A is invertible if and only if det(A) is

non-zero, in which case

A−1 =
1

det(A)

(
d −b
−c a

)
.

If det(A) = 0 then A is singular.
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Theorem

If A is an invertible m ×m matrix, then for every ~b ∈ Rn, the
equation A~x = ~b has a unique solution, namely ~x = A−1~b.

Proof.

Theorem

1 If A is invertible, then so is A−1, and (A−1)−1 = A.

2 If A and B are invertible n × n matrices then so is AB, and
(AB)−1 = B−1A−1.

3 If A is invertible, then so is AT , and (AT )−1 = (A−1)T .

Proof.
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Elementary Row Operations

Recall

Denoting rows r and s by Rr and Rs , the row operations are:

Rr ↔ Rs Interchange rows Rr and Rs of a matrix.

cRr For a non-zero c ∈ R, replace Rr by cRr .

Rr + cRs Replace Rr by Rr + cRs

Definition

An elementary matrix is any n × n matrix that can be obtained by
performing a single elementary row operation to In.
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Example

We construct three elementary matrices below. 1 0 0
0 1 0
0 0 1

 R2+2R3−−−−−→

 1 0 0
0 1 2
0 0 1


 1 0 0

0 1 0
0 0 1

 R2↔R3−−−−→

 1 0 0
0 0 1
0 1 0


 1 0 0

0 1 0
0 0 1

 3R1−−→

 3 0 0
0 1 0
0 0 1
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Example

Multiply the general 3× 3 matrix on the left by each of the above
matrices. 1 0 0

0 1 2
0 0 1

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 
 1 0 0

0 0 1
0 1 0

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 
 3 0 0

0 1 0
0 0 1

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 =
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Exercise

For a matrix having 4 rows, write down the elementary matrices
which perform the following elementary row operations.

1 R1 ↔ R3

2 3R2

3 R2 + 7R4

Exercise

Write down the inverse for each of the elementary matrices above.
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Note

1 If In
R−→ E , then for any matrix A with n rows, A

R−→ EA.

2 So, if A can be row reduced to B by a sequence of row

operations R1,R2, . . . ,Rk and In
Ri−→ Ei , then

B = EkEk−1 · · ·E2E1A.

(i.e. A
R1−−→ E1A

R2−−→ E2(E1A)
R3−−→ E3E2E1A→ · · ·

Rk−−→
EkEk−1 · · ·E2E1A = B).

3 Since each row operation is invertible, each elementary matrix
is invertible.
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Theorem

An n × n matrix A is invertible if and only if A ∼ In, in which case
the sequence of elementary row operations which transform A to
the identity also transform the identity matrix In to A−1.

Note

Thus if A
R1−−→ R2−−→ · · · Rk−−→ In then

[A : In]
R1−−→ R2−−→ · · · Rk−−→ [In : A−1].
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Proof.

Recall that an n × n matrix A is invertible if and only if every
equation A~x = ~b has a unique solution.
This is true if and only if the row reduced echelon form of A has a
pivot in every row (existence of solution) and column (uniqueness
of solution).
Thus A is invertible if and only if the row reduced echelon form of
A is In.

Now suppose that A is invertible and that A
R1−−→ R2−−→ · · · Rk−−→ In.

Suppose also that In
Ri−→ Ei .

Then A
R1−−→ E1A

R2−−→ E2E1A→ · · ·
Rk−−→ Ek · · ·E1A = In.

Thus A = E−11 E−12 · · ·E
−1
k ⇒ A−1 = Ek · · ·E1.
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Example

Let A =

1 2 −1
2 3 1
3 5 1

. Find A−1.
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