MTHSC 3110 Section 2.3 – Characterization of Invertible Matrices

Kevin James

Kevin James MTHSC 3110 Section 2.3 – Characterization of Invertible Ma

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

- Let A be an $n \times n$ matrix. The following are equivalent.
 - 1 A is invertible.
 - $2 A \sim I_n.$
 - 8 A has n pivots.
 - **4** $A\underline{x} = \underline{0}$ has only the trivial solution.
 - **6** The columns of A are linearly independent.
 - **6** The linear transformation $T : \underline{x} \mapsto A\underline{x}$ is 1-1.
 - **?** For every $\underline{b} \in \mathbb{R}^n$, the equation $A\underline{x} = \underline{b}$ has at least one solution.
 - **8** The columns of A span \mathbb{R}^n
 - **9** The linear transformation $T : \underline{x} \mapsto A\underline{x}$ is onto.
 - 1 $\exists C \text{ so that } CA = I_n.$

 - $\mathbf{P} A^{\mathsf{T}}$ is invertible.

Proof.

To prove a number of statements are equivalent, it is often easiest to show a chain of beginning and ending at one of the statements. Here, it is easiest to do the following chains:

$$(1) \implies (10) \implies (4) \implies (3) \implies (2) \implies (1)$$
$$(1) \implies (11) \implies (7) \implies (1)$$
$$(7) \iff (8) \iff (9)$$
$$(4) \iff (5) \iff (6)$$
$$(1) \iff (12)$$

EXAMPLE

Is the matrix
$$A = \begin{pmatrix} 0 & 7 & 1 \\ 1 & 2 & 4 \\ 2 & 3 & 6 \end{pmatrix}$$
 invertible?

・ロ・・日・・日・・日・ のくの

Theorem

Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a linear transformation, and let A be the corresponding matrix. Then T is invertible if and only if A is invertible, in which case $T^{-1}\underline{x} = A^{-1}\underline{x}$.

・ 同 ト ・ ヨ ト ・ ヨ ト